
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

OptiTrust: Producing Trustworthy High-Performance Code
via Source-to-Source Transformations
GUILLAUME BERTHOLON, ARTHUR CHARGUÉRAUD, THOMAS KŒHLER, BEGATIM
BYTYQI, and DAMIEN ROUHLING, Inria & Université de Strasbourg, CNRS, ICube, France

Developments in hardware have delivered formidable computing power. Yet, the increased hardware complexity

has makes it a real challenge to develop software that exploits the hardware to its full potential. Numerous

approaches have been explored to help programmers turn naive code into high-performance code, finely tuned

for the targeted hardware. However, these approaches have inherent limitations, and it remains common

practice for programmers seeking maximal performance to follow the tedious and error-prone route of writing

optimized code by hand.

This paper presents OptiTrust, an interactive source-to-source optimization framework that operates

on general-purpose C code. The programmer develops a script describing a series of code transformations.

The framework provides continuous feedback in the form of human-readable diff s over conventional C

code. OptiTrust supports advanced code transformations, including transformations exploited by the state-

of-the-art DSL tools Halide and TVM, and transformations beyond the reach of existing tools. OptiTrust

also supports user-defined transformations, as well as defining complex transformations by composition

of simpler transformations. Crucially, to check the validity of code transformations, OptiTrust leverages a

resource analysis that exploits contracts expressed in a simplified form of Separation Logic. Throught several

case studies, we demonstrate how OptiTrust can be employed to produce state-of-the-art, high-performance

programs.

1 INTRODUCTION
1.1 Motivation
Performance matters in numerous fields of computer science, and in particular in applications from

machine learning, computer graphics, and numerical simulation. Massive speedups can be achieved

by fine tuning the code to best exploit the available hardware [Kelefouras and Keramidas 2022].

Between a naive implementation and an optimized implementation, it is common to see a speedup

of the order of 50x—on a single core. For many applications, the code can then be accelerated

further by one or two orders of magnitude by refining the code to exploit multicore parallelism or

GPUs.

Yet, producing high performance code is hard. Over the past decades, nontrivial mechanisms

with subtle interactions were integrated into hardware architectures. Reasoning about performance

requires reasoning about the effects of multiple levels of caches, the limitations of memory band-

width, the intricate rules of atomic operations, and the diversity of vector instructions (SIMD).

These aspects and their interactions make it challenging to build cost models. For example, the

cost of a memory access can range from one CPU cycle to hundreds of CPU cycles, depending on

whether the corresponding data is already in cache. In the general case, accurately modeling cache

behavior requires a deep understanding of the algorithm and hardware at play.

Accurately predicting runtime behavior is challenging for expert programmers, and appears

beyond the capabilities of automated tools. Therefore, compilers struggle to navigate the exponen-

tially large search space of all possible code candidates [Triantafyllis et al. 2003], resorting to best

effort heuristics, and often failing to produce competitive code [Barham and Isard 2019].

Today, it remains common practice in industry for programmers to write optimized code by
hand [Amaral et al. 2020; Evans et al. 2022]. However, manual code optimization is unsatisfactory

for at least three reasons. First, manually implementing optimized code is time consuming. Second,

Authors’ address: Guillaume Bertholon; Arthur Charguéraud, arthur.chargueraud@inria.fr; Thomas Kœhler; Begatim Bytyqi;

Damien Rouhling, Inria & Université de Strasbourg, CNRS, ICube, France.

HTTPS://ORCID.ORG/0000-0001-7000-382X
HTTPS://ORCID.ORG/0000-0001-7764-4507
HTTPS://ORCID.ORG/0000-0001-8461-8075
HTTPS://ORCID.ORG/0000-0001-5556-3634
HTTPS://ORCID.ORG/0000-0001-5556-3634
HTTPS://ORCID.ORG/0009-0007-9279-4766
https://orcid.org/0000-0001-7000-382X
https://orcid.org/0000-0001-7764-4507
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5556-3634
https://orcid.org/0009-0007-9279-4766

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Halide/TVM Elevate+Rise Exo Clay/LoopOpt ATL Alpinist Clava+LARA

Generality

Expressiveness

Control

Feedback

Composability

Extensibility

Trustworthiness

Table 1. Overview of user-guided tools for high-performance code generation.

the optimized code is hard to maintain through hardware and software evolutions. Third, the

rewriting process is error-prone: not only every manual code edition might introduce a bug, but the

code complexity also increases, especially when introducing parallelism. These three factors are

exacerbated by the fact that optimizations typically make code size grow by an order of magnitude.

In summary, neither fully automatic nor fully manual approaches are satisfying for generating

high performance code. Both machine automation and human insight are needed in the optimization

process. Let us introduce a number of qualitative properties for comparing semi-automatic code

optimization tools that rely on some form of user interaction.

• Generality: How large is the domain of applicability of the tool? In particular, is it restricted

to a domain-specific language?

• Expressiveness: How advanced are the code transformations supported by the tool? Is it

possible to express state-of-the-art code optimizations?

• Control: Howmuch control over the final code is given to the user by the tool? In particular,

is there a monolithic code generation stage?

• Feedback: Does the tool provide easily readable intermediate code after each transforma-

tion?

• Composability: Is it possible to define transformations as the composition of existing

transformations? Can transformations be higher-order, i.e., parameterized by other trans-

formations?

• Extensibility of transformations: Does the tool facilitate defining custom transformations

that are not expressible as the composition of built-in ones?

• Trustworthiness: Does the tool ensure that user-requested transformations preserve the

semantics of the code? Does it moreover provide mechanized proofs?

Next, we review related tools for producing high performance code, before presenting our

OptiTrust framework and explaining why it achieves a unique combination of features.

1.2 Related Work
Halide [Ragan-Kelley et al. 2013] is an industrial-strength domain-specific compiler for image

processing, used for example to optimize code that runs in products like Adobe Photoshop and

YouTube. Halide popularized the idea of separating an algorithm describing what to compute

from a schedule describing how to optimize the computation. This separation makes it easy to

try different schedules. TVM [Chen et al. 2018] is a tool directly inspired by Halide, but tuned

for applications to machine learning. Although Halide and TVM have demonstrated strength for

particular applications, these tools are inherently limited to their domain-specific languages, they

do not support higher-order composition of transformations, and are not extensible [Barham and

Isard 2019; Ragan-Kelley 2023]. Moreover, understanding their output is difficult as the applied

transformations are not detailed to the user. Interactive scheduling systems have been proposed to

mitigate this difficulty [Ikarashi et al. 2021].

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:3

Elevate [Hagedorn et al. 2020] is a functional language for describing optimization strategies
as composition of simple rewrite rules. Advanced optimizations from TVM and Halide can be

reproduced using Elevate. One key benefit is extensibility: adding rewrite rules is much easier than

changing complex and monolithic compilation passes [Ragan-Kelley 2023]. Elevate strategies are

applied on programs expressed in a functional array language named Rise, followed by compilation

to imperative code. The use of a functional array language greatly simplifies rewriting, however

it restricts applicability and makes controlling imperative aspects difficult (e.g. memory reuse).

Besides, it may make harder the understanding of optimization strategies by the programmer,

because a same optimization may take relatively different forms between a functional language and

an imperative language familiar to the high-performance programmer. In particular, the chaining of

optimizations generally leads to the introduction of cascades of map operations much less readable

than if the corresponding operations appear in sequence in a for-loop.

Exo [Ikarashi et al. 2022] is an imperative DSL embedded in Python, geared towards the develop-

ment of high-performance libraries for specialized hardware. Exo features for-loops, if-statements,

arrays and procedures. It is restricted to static control programs with linear integer arithmetic. Exo

programs can be optimized by applying a series of source-to-source transformations. These trans-

formations are described using a Python script, with simple string-based patterns for targeting code

points. The user can add custom transformations, possibly defined by composition; higher-order

composition seems possible but has not yet been demonstrated.

Clay [Bagnères et al. 2016a] is a framework to assist in the optimization of loop nests that

can be described in the polyhedral model [Feautrier 1992]. The polyhedral model only covers a

specific class of loop transformations, with restriction over the code contained in the loop bodies,

however it has proved extremely powerful for optimizing code falling in that fragment. Where a

tool like Pluto [Bondhugula et al. 2008a] acts as a black-box for optimizing such loop nests, Clay

provides a decomposition of polyhedral optimizations (known as a schedule) as a sequence of basic
transformations with integer arguments. The corresponding transformation script can then be

customized by the programmer. Clint [Zinenko et al. 2018b] adds visual manipulation of polyhedral

schedules through interactive 2D diagrams. LoopOpt [Chelini et al. 2021] provides an interactive

interface that helps users design optimization sequences (featuring unrolling, tiling, interchange,

and reverse of iteration order) that can be bound in a declarative fashion to loop nests satisfying

specific patterns.

ATL [Liu et al. 2022] is a purely functional array language for expressing Halide-style programs.

Its particularity is to be embedded into the Coq proof assistant. ATL programs can be transformed

through the application of rewrite rules expressed as Coq theorems. With this approach, transfor-

mations are inherently accompanied with machine-checked proofs of correctness. The set of rules

includes expressive transformations beyond the scope of Halide, and can be extended by the user.

Once optimized, ATL programs are then compiled into imperative C code. Like Rise, generality and

control are restricted by the functional array language nature of ATL.

Alpinist [Sakar et al. 2022] is a pragma-based tool for optimizing GPU-level, array-based code,

able to apply basic transformations such as loop tiling, loop unrolling, data prefetching, matrix

linearization, and kernel fusion. The key characteristic of Alpinist is that it operates over code

formally verified using the VerCors framework [Blom et al. 2017]. Concretely, Alpinist transforms

not only the code but also its formal annotations. If Alpinist were to leverage transformation scripts

instead of pragmas, it might be possible to chain and compose transformations; yet, this possibility

remains to be demonstrated.

Clava [Bispo and Cardoso 2020] is a general-purpose C++ source-to-source analysis and trans-

formation framework implemented in Java. The framework has been instantiated mainly for code

instrumentation purpose and auto-tuning of parameters. Clava can also be used in conjunction with

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

a DSL called LARA [Silvano et al. 2019] for optimizing specific programs. LARA allows expressing

user-guided transformations by combining declarative queries over the AST and imperative invo-

cations of transformations, with the option to embed JavaScript code. The application paper on the

Pegasus tool [Pinto et al. 2020] illustrates this approach on loop tiling and interchange operations.

Table 1 summarizes the properties of the existing approaches, highlighting their diversity. The

table is sorted by increasing generality. For the tools considered, this generality is negatively corre-

lated with expressiveness, i.e., with how advanced the supported transformations are. Regarding

generality, only Clava supports operating on general C code, yet provides absolutely no guarantees

on semantics preservation. For each property considered, at least two tools show strengths on that

property (above half score). However, even if we leave out the ambition of achieving mechanized

proofs, each tool considered shows weaknesses on at least two properties (half score or less).

1.3 Overview
This paper introduces OptiTrust, the first interactive optimization framework that operates on

general-purpose C code and that supports and validates state-of-the-art optimizations.

In OptiTrust, the user starts from an unoptimized C code, and develops a transformation script
describing a series of optimization steps. Each step consists of an invocation of a specific trans-

formation at specified targets. OptiTrust provides an expressive target mechanism for describing,

in a concise and robust manner, one or several code location. On any step of the transformation

script, the user can press a key shortcut to view the diff associated with that step, in the form of a

comparison between two human-readable C programs. Concretely, a transformation script consists

of an OCaml program linked against the OptiTrust library.

To ensure that the user applies only semantic-preserving transformations, OptiTrust performs

validity checks that leverage our resource-based type system. This type systemmay be thought of as a

variant of the Rust type system with augmented expressiveness a scaled down version of Separation

Logic [Reynolds 2002]. Separation Logic has been successfully applied on languages ranging from

machine code to high-level functional programming languages, to verify programs ranging from

operating systems components to general-purpose data structures and algorithms [Charguéraud

2020; O’Hearn 2019]. Our resource-based system aims to be similar in spirit to RefinedC [Sammler

et al. 2021], a Separation Logic-based type system for C code, even though we have not implemented

all the features of RefinedC yet.

For type-checking resources, functions and loops need to be equipped with contracts describing
their resource usage. These contracts may be inserted either directly as no-op annotations in the

C source code, or they may be inserted by dedicated commands as part of the transformation

script. OptiTrust is able to automatically infer simple loop contracts, thus not all loops need to

be annotated manually. Every OptiTrust transformation takes care of updating contracts in order

to reflect changes in the code. In other words, a well-typed program remains well-typed after a

transformation.

Before describing an example optimization script, let us evaluate OptiTrust against the afore-

mentioned criteria.

Generality. OptiTrust is generally applicable to optimizing C code. The code must parse using

Clang, the parser of LLVM. The fragments of code that the user wishes to alter must moreover

type-check in our resource-based type system.

For this first release of OptiTrust, we support only core features of the C language: sequences,

loops, conditionals, functions, local and global variables, arrays, and structs. For the time being, we

do not support break, continue, and non-terminal return statements. There is, however, no inherent

limitation: OptiTrust could presumably be extended to support nearly all of the C language (leaving

out general goto statements).

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:5

Regarding our type system, in the long term we aim for a full-featured Separation Logic similar

to RefinedC [Sammler et al. 2021]. In technical terms, our design decisions are geared towards the

support of arbitrary assertions for capturing all program invariants, user-defined representation
predicates for describing advanced data structures, and ghost operations for logical transformations

of the view over memory. At this stage, however, our implementation and case studies mainly

demonstrate the manipulation of shapes predicates, mainly for describing n-dimensional arrays,

without specifying the values stored in these arrays. The pure assertions that are manipulated in

our case studies demonstrate mainly the use of arithmetic constraint.

As we show, shape predicates and basic arithmetic suffices to justify a large range of program

optimizations. We leave it to future work the demonstration of how one could: (1) exploit invariants

on values stored in data structures to justify certain optimizations; and (2) demonstrate how

nontrivial invariants can be maintained through code transformations. The point of the present

paper is to demonstrate the generality of OptiTrust in terms of being able to apply source-to-source

transformations on code written in a general-purpose programming language.

Expressiveness. The combination of three ingredients allows OptiTrust’s users to generate

their desired optimized code: (1) the use of a transformation script for describing a sequence of

transformations; (2) the use of a target mechanism, allowing to precisely pinpoint where transfor-

mations should be applied; (3) the availability of a catalogue of general-purpose transformations,

whose composition enables altering the code with a lot of flexibility.

Let us give an overview of the transformations currently supported in OptiTrust. For instruction-

level transformations, we support: function inlining, constant propagation, instruction reordering,

switching between stack and heap allocation, and basic arithmetic simplifications. For control-

flow transformations, we support: loop interchange, loop tiling, loop fission, loop fusion, loop-

invariant code motion, loop unrolling, loop deletion, loop splitting, introduction of sliding windows,

and introduction and elimination of conditionals. For data layout transformations, we support:

interchange of dimensions of an array, and array tiling.

The aforementioned transformations have been motivated by the case studies presented further

in this paper. As we complete more case studies, additional transformations will be required. A key

strength of OptiTrust is precisely that, unlike monolithical tools, it may be extended with additional

transformations without affecting the behavior of existing transformation scripts. We discuss this

aspect further in the paragraph on extensionality.

Certain transformations may require nontrivial checks. For example, array tiling requires the tile

size to divide the array size, and loop splitting requires arithmetic inequalities to hold. OptiTrust

currently only validates simple conditions; in the future, more complex conditions could be handled

using either SMT solvers or interactive theorem provers.

Control. Transformation scripts in OptiTrust empower the user with very fine-grained control

over how the code should be transformed. A challenge is to allow for concise scripts. To that end,

OptiTrust provides high-level combined transformations, effectively recipes for combining the basic
transformations provided by OptiTrust. Section ?? presents the example of Loop.reorder_at, which

attempts, using a combination of fission, hoist, and swap operations, to create a reordered loop nest

around a specified instruction. Overall, the use of combined transformations allows for reasonably

concise transformation scripts, with the user’s intention being described at a relatively high level

of abstraction. The user stays in control and can freely mix the use of concise abstractions and

precise fine-tuning transformations.

Feedback. For each step in the transformation script, OptiTrust delivers feedback in the form

of human-readable C code. The user usually only needs to read the diff against the previous code.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Interestingly, OptiTrust also records a trace that allows investigating all the substeps triggered by

a combined transformation. This information is critically useful when the result of a high-level

transformation does not match the user’s intention. Besides, a key feature of OptiTrust is its fast

feedback loop. The production of fast, human-readable feedback in a system with significant

control is reminiscent of interactive proof assistants, and of the aforementioned ATL tool [Liu et al.

2022].

Composability. OptiTrust transformation scripts are expressed as OCaml programs, and each

transformation from our library consists of an OCaml function. Because OCaml is a full-featured

programming language, OptiTrust users may define additional transformations at will by combining

existing transformations. User-defined transformations may query the abstract syntax tree (AST)

that describes the C code, allowing to perform analyses before deciding what transformations

to apply. Furthermore, because OCaml is a higher-order programming language, transformation

can take other transformations as argument. We use this programming pattern for example to

customize the arithmetic simplifications to be performed after certain transformations.

Extensibility. If the user needs a transformation that is not expressible as a combination of

transformations from the OptiTrust library, a custom transformation can be devised. Because

OptiTrust does not rely on heuristics, adding a new transformation to OptiTrust does not impact in

any way the behavior of existing scripts. To define custom transformations, OptiTrust provides:

smart destructors for analyzing and recognizing the input AST, smart constructors for producing

fresh subterms for the output AST, as well a term-rewriting facility based on a pattern-matching

algorithm. OptiTrust’s library provides numerous examples illustrating how to use these features.

For each custom transformation, it is the implementor’s responsibility to work out the criteria

under which applying the transformation preserves the semantics of the code, and to adapt contracts

if necessary in order to produce well-typed code.

Trustworthiness. Compilers are well-known to be incredibly hard to get 100% correct [Yang

et al. 2011]. Like compilers, optimization tools are highly subject to bugs. In the long term, we might

be interested in the formal verification of the implementation of OptiTrust. Yet, such a verification

endavour consists of a tremendous challenge, beyond the state-of-the-art in compiler verification.

Moreover, even if we could tackle the verification of OptiTrust’s builtin transformations, it is

unlikely that every implementor of a custom transformation would have the expertise and budget

to take on formal verification. We therefore designed OptiTrust in such a ways as to mitigate the

risks of producing incorrect code.

Firstly, we instrumented OptiTrust to generate reports when processing transformation scripts. A

report takes the form of a standalone HTML page, which contains the diff for every transformation

step (and sub-steps). Such a report can be thoroughly scrutinized by a third-party reviewer. The

possibility to review, optimization by optimization, the differences between the reference code and

the optimized code may be highly relevant in the context of safety- or security-critical applications.

Secondly, we have organized the OptiTrust code base so as to isolate the implementation of

the basic transformations, which consists of transformations that directly modify the AST. Only

basic transformations need to be trusted. We have been careful to systematically minimize the

complexity of the interface and of the implementation of our basic transformations. All other

transformations—the combined transformations—are not part of the trusted computing base.

There is a third potential approach to increasing trust for code optimized using OptiTrust, similar

to the one put forward in the aforementioned Alpinist [Sakar et al. 2022], and also used in prior

work on the formal validation of programs generated by Halide [Clément and Cohen 2022; van den

Haak et al. 2024]. This approach is not demonstrated in the present paper and is left to future work,

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:7

nevertheless we find it important to mention it because it is at the heart of the original motivation

for the OptiTrust project and of its future directions. The idea is that if the input program is fully

verified with respect to functional correctness, and if the invariants are maintained throughout all

code optimizations, then the correctness of the final optimized program can be validated, totally

independently from the sequence of optimizations that have been performed. This validation

step could be performed using a third-party tool (e.g., Coq), effectively removing the OptiTrut

implementation from the trusted code base.

In summary, in the current version of OptiTrust, even without full functional correctness asser-

tions, the combination of our minimized trusted code base approach combined with the possibly of

human-review of transformation reports provides, we believe, a significant increase in trustworthi-

ness compared with other compilers.

1.4 Contributions
In this paper, we make the following contributions.

• We introduce OptiTrust, an optimization framework that delivers a previously unmatched

combination of features in terms of generality, expressiveness, control, feedback, compos-

ability, extensibility, and trustworthiness.

• We present criterias for checking the correctness of classical, general-purpose code trans-

formations, with respect to resource usage information expressed in a type system that

corresponds to a subset of Separation Logic.

• We explain, for the same classical code transformations, how to update contracts and how to

insert or move ghost operations in order to ensure that the output code remains well-typed

in our system.

• We introduce a targeting mechanism specialized for targeting locations in abstract syntax

trees, allowing the user to concisely and robustly indicate where a transformation should

be applied.

• Wedemonstrate, for the first time, the possibility to produce state-of-the-art high-performance

code for 3 classic benchmarks, via a series of source-to-source transformations expressed at

the level of C code.

OptiTrust is open-source and available at: https://github.com/charguer/optitrust. The implemen-

tation of OptiTrust involves about 25k lines of OCaml code. The regression suite contains 170 unit

tests, featuring 880 individual steps. The traces associated with the 3 case studies presented in this

paper can be navigated interactively at: TODO.

1.5 Contents of the Paper
We first present the features of OptiTrust by means of example, in Section ??. Then, we present
the construction of OptiTrust in three parts. In Section 3, we describe the overall architecture of

the implementation, including the reversible encoding of C code into the imperative 𝜆-calculus. In

Section 4, we present our target mechanism. In Section 5, we explain our resource-based typing

algorithm. In Section 6, we present a set of representative code transformations, illustrating in

particular how resource information is exploited to justify correctness, and how function and loop

contracts are maintainted through transformations. Finally, we discuss related work in Section ??.

2 CASE STUDIES
[WORK IN PROGRESS]

https://github.com/charguer/optitrust
TODO

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

3 THE OPTITRUST FRAMEWORK
3.1 Principle of a Reversible Translation from C into an Imperative Lambda-Calculus
In OptiTrust, input C programs are encoded into an imperative 𝜆-calculus. All code transformations

are performed on that imperative 𝜆-calculus. Then, programs are decoded back into C syntax.

Crucially, our encoding-decoding scheme is designed for round-trip stabilitiy: if a fragment of C

code is encoded into our imperative 𝜆-calculus, and if it is not altered by a code transformation,

then it is decoded back into the original C code. Importantly, our translation does not depend on

our resource typing system. It only assumes that the input code to be valid C code. We discuss

further on the language features that we do not yet handle. Besides, as we detail further on, the

presence of unsupported features in a number of functions from a C source file does not prevent

OptiTrust to handle the remaining functions.

In order to enable this stable round-trip property, our encoding phase leaves a few C-specific

annotations in the 𝜆-calculus AST that it produces. For example, these annotations may indicate

whether a variable is stack- or heap-allocated; whether an access is written *(x.f) or x->f; etc. These

annotations are exploited during the decoding phase. Printing details such as spaces, tabulation, and

line printing may not preserved with respect to the C code initially provided by the programmer.

However, when the OptiTrust user iterates a number of transformations, the parts of the C code

that are not altered by the transformations remains textually unmodified.

The interest of applying transformations not on the C syntax but on a simpler syntax is to allow

for less error-prone implementation of transformations. In particular, eliminating local mutable

variables and left-values dramatically simplifies the rules for variable substitution. The use of a

intermediate language with simpler semantics is commonplace, both in the domain of compilation

and in the domain of program verification. For example, the Common Intermediate Language (CIL)

serves as intermediate compilation language for the whole .NET ecosystem [Gough and Gough

2001]; Why3 [Filliâtre and Paskevich 2013] serve as as intermediate verificiation language for C,

Java, and Ada programs. Viper [Müller et al. 2017] and Why3 [Filliâtre and Paskevich 2013] serves

as as intermediate verification language for Java, Rust, Go, OpenCL, etc. We are not aware, however,

of any framework that leverages a translation into intermediate language and provides a reciprocal

translation back to the source language, with the stable round-trip property

This paper focuses on the encoding-decoding of C code. Presumably, we could apply a similar

encoding-decoding scheme to other well-typed languages, such as OCaml, Rust, OpenCL/Cuda,

Java, etc. Once the encoding-decoding is defined for another language, most of OptiTrust’s code

transformations, which expressed on OptiTrust’s internal 𝜆-calculus, become immediate to available

for this language. We leave the investigation of other languages to future work.

3.2 Unsupported C Features and their Handling by OptiTrust
Our translation covers a subset of the C language. In particular, as of writing, our translation does

support several features. Function pointers and variadic functions: we believe that there is no

specific difficulty, however we have not yet implemented support for them. Compound literals:

handling on-the-fly stack-allocation of data would require an extension to our current treatment

of of stack-allocated variables. Variable length arrays: they introduce a (weak) form of dependent

types, adding some complexity in typechecking and in transformations. General goto and inline

assembly: we have no plan to support them in OptiTrust. Pre/post-increment/decrement operators:

their semantics is highly nontrivial. For simplicity, at the moment we simply encode the statements

t++ and ++t as t += 1, and we reject occurrences that of in-place increment operators that appear

inside subexpressions. Likewise for in-place decrement operators. We leave it to future work to

investigate how to leverage our type system to accept idomatic C patterns such as t[i++] = v.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:9

Our type system covers a subset of the C language yet slighly smaller than the subset covered

by our translation. Mainly, we do not yet support the control-flow operators return, break, and
continue. Their treatment in Separation Logic is well-understood—they are handled, for example,

in the VST program verification framework for C programs [Cao et al. 2018]. Yet, their support

introduces a fair amount of additional complexity, not only with respect to resource typing, but

also with respect to loop transformations.

Based on these two layers of restrictions, we can classify C functions in 3 categories.

(1) Functions that OptiTrust is able to translate and to typecheck. For these definitions, all

OptiTrust code transformation are available, and they are guaranteed to be preserve the

code semantics.

(2) Functions that OptiTrust is able to translate, yet unable to typecheck. Certain semantic-

preserving code transformations can be applied inside those definitions (e.g., creating a

specialized version of function). More complex code transformations are either not supported

(e.g., read-last-write), or can be applied by the programmer yet without any correctness

guaranteed (e.g., loop-swap).

(3) Functions that OptiTrust is unable to translate. There are two cases.

(a) If OptiTrust is able to translate the prototype of the function, then it produces an AST

node for the function definition, and stores the body as plain text. In particular, the user

may attach a contract to the function. The contract itself is not verified with respect to

the function implementation, however the contract can be exploited for checking code

that invokes this function.

(b) If OptiTrust is unable to translate the prototype (e.g., due to variadic functions or variable
length arrays), then the whole function definition is stored as plain text in the OptiTrust

AST. If such a function, call it 𝐹 , has an unsupported prototype, and another function

𝐺 calls 𝐹 , then the body 𝐺 cannot be typechecked. However, the function 𝐺 may be

assigned an unverified contract. Thus, it is possible to typecheck other functions that

invoke the function 𝐺 .

In summary, the presence of unsupported features in a C file is not invasive with respect to

the ability of OptiTrust to handle the rest of the code.

3.3 OptiTrust’s Internal AST
Fig. 1 gives the grammar of OptiTrust’s internal 𝜆-calculus. In this language, variables are bound

by let-bindings and function definitions, and they are always immutable. A benefit is that variables

may be substituted with values without concern about occurrences as left- or right-values. A special

variable, named res is used to denote the result value of a function. As we will see, return 𝑡 is
encoded as “let res = 𝑡 ; return”. Moreover res appears in function contrats to specify the return

value.
1

The metavariable 𝑏 denotes a boolean value (true or false). The metavariable 𝑛 denotes an integer.

To simplify the presentation, we do not distinguish here between all the possible types of numbers;

Our implementation, however, accounts for a diversity of integer and floating point types. Record

and array initializers are provided; we will explain further on how their treatment differ between

const and non-const values.
In the OptiTrust AST, the sequence construct is systematically used for describing function bodies,

loop bodies, and branches of conditionals—even if the sequence contains zero or a single instruction.

1
The use of a dedicated name such as res is common practice in program verification tools, e.g. ESC/Java [Flanagan et al.

2002], or Why3 [Filliâtre 2003]. Besides, viewing a return as an assignement instruction appears for example in the Viper

program verification tool [Müller et al. 2017].

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

𝜋 := | par | · “parallel” flag on for-loops

𝑟 := | range(𝑡start, 𝑡stop, 𝑡step) range for simple loops

𝑡 := | 𝑥 | res variables, and the special variable res
| 𝑏 | 𝑛 boolean values, and number values
| {𝑓1 = 𝑡1; ...; 𝑓𝑛 = 𝑡𝑛} | [𝑡1; ...; 𝑡𝑛] structure and arrays as values
| (𝑡1; ...; 𝑡𝑛) | let 𝑥 = 𝑡 | 𝑡0 (𝑡1, ..., 𝑡𝑛) sequence, declaration, and function call
| alloc | get | set | free primitive operations on memory cells
| ref | ref_uninit allocations of local memory cells
| 𝑡1[𝑡2] | 𝑡1.𝑓 projection from array/struct values
| 𝑡1 ⊞ 𝑡2 | 𝑡1 � 𝑓 address computations
| for𝜋 (𝑖 ∈ 𝑟) 𝑡body simple for-loops, possibly parallel
| while 𝑡1 do 𝑡2 while loops
| if 𝑡0 then 𝑡1 else 𝑡2 conditional
| return | break | continue control-flow operators (no return value)

Fig. 1. Grammar of OptiTrust’s internal 𝜆-calculus.

The systematic use of sequences is commonly found in the AST representation of C compilers

(e.g., Clang), but less common in traditional presentations of the 𝜆-calculus. Our motivation for

systematic use of sequences is that is eases the definition of program transformations, in particular

for transformations that need to insert or move instructions.

The elements of a sequence consist of: let-bindings, function calls without a binding for the

return value, control structures such as loops and conditionals, as well as control-flow operators

such as return, break, and continue. A C source file is also described as a sequence, which may

moreover contain declarations of types, functions, and global variables.

Primitive operations are provided for allocating memory space without intializing it (alloc), for
reading (get), for writing (set) a cell, and for freeing allocated space (free). Moreover, OptiTrust

features two additional operations to allocate memory cells for which the corresponding free

operation is implicitly performed at the end of the surrounding sequence. The operation ref(𝑡)
allocates a memory cell initialized with a specific contents 𝑡 . The operation operation ref_uninit(())
allocates an uninitialized memory cell—in which read operations have undefined behavior. These

two operations are meant to occur as part of a let-binding, e.g. let 𝑥 = ref(𝑡). We have considered

the possibility of encoding ref and ref_uninit using alloc and free, but ultimately concluded that

this approach is not practical.
2

The operation 𝑎[𝑖] reads the 𝑖-th cell of the array 𝑎, provided 𝑎 denotes a constant value. If,

however, 𝑎 corresponds to a heap-allocated or a mutable stack-allocated array, then the memory

address of 𝑖-th cell of the array 𝑎 can be computed by the operation 𝑡 ⊞ 𝑖 . This operations to the C

pointer arithmetic operation t+i. The contents of that cell may be retrived by evaluating get((𝑡 ⊞ 𝑖)).
Likewise, reading the field 𝑓 of a constant record 𝑟 is described by the operation 𝑟 .𝑓 , whereas the

memory address of the field 𝑓 of a record 𝑟 allocated in memory is described by the operation 𝑟 � 𝑓 .

This operation would correspond to the C arithmetic operation r + offset(typeof(r), f).

The construct for𝜋 (𝑖 ∈ range(𝑡start, 𝑡stop, 𝑡step)) 𝑡body describes a simple-for-loop. In such a loop,

the loop range, which consists of the loop bounds and the per-iteration step are evaluted only once

2
Using alloc and free to encode the behavior of stack-allocated variables would introduce additional statements in the

OptiTrust AST that have no not correspond to any line in the C code. The presence of such extra “hidden” statements

makes it very difficult to retain an intuitive behavior for target resolution. An alternative approach would be to display the

additional statements to the end user, however we have found that making free operations explicit for every local mutable

variable is fairly verbose and harms readability of the rest of the code.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:11

at the start. Following the convention used by Python and other languages, the index goes from the

start value inclusive to the stop value exclusive. The variable 𝑖 denotes the loop index. It is bound

in the loop body as an immutable variable. Optionnally, the loop may be tagged with a parallel
flag, asserting that the loop may be executed in parallel. This flag corresponds to the directive:

#pragma openmp parallel.3

For sequential C for-loops that do fit the format of our simple-for-loops, we encode them into

while-loops. We use an annotation to indicate that they should be printed back as C for-loops. We

postpone support for do-while loops, which are seldom used.

3.4 AST Manipulation and Unique Identifiers
The OptiTrust AST corresponds to an immutable tree data structure. A program transformation

reads an abstract syntax tree and produces a fresh tree, which may share subtrees with the original

tree. This purely functional programming pattern avoids numerous bugs that may arise when

modifying data structures in-place. Moreover, it enables us to efficiently store, thanks to sharing,

the trace that consists of the snapshot of all intermediate ASTs produced by a transformation script.

We maintain the invariant that, within a given AST, every variable binder and every variable

occurrence bears a unique identifier (an integer). These unique identifiers not only make variable

comparison more efficient, they avoid difficulties that may arise when transformations lead to name

clashes. The string representation is used only as a default name for variables when printing out

code in text format. Two variables with distinct identifiers may have the same string representation x,

if the shadowing convention is respected. If, however, our analysis detects that an inner occurrence

of a variable named x refers to an outer binder on x, then it means that one binder needs to be

renamed.

To maintain the invariant of unique identifiers, we need to refresh identifiers whenever a

transformation duplicates a subterm. In fact, we maintain an even stronger invariant: a same

physical tree node must occur at most once in a given AST. Thus, whenever a transformation needs

to duplicate a subterm, it invokes a tree copy function that not only allocates fresh nodes but also

freshens the identifiers associated with binders and update the corresponding variable occurrences

accordingly.

Maintaining unique occurrence of nodes in ASTs has an additional benefits. We can assign

unique identifiers not only to binders, but to every node. Unique identifiers on nodes are helpul for

building auxiliary data structures used when performing code analyses. For example, if we build

the graph relating functions to their call sites, we may use these unique identifiers to identify the

call sites.

The reader may worry about correctness issues in case the implementation of a transformation is

missing a copy operation for a duplicated subterm. Such a miss would be immediately caught by a

checking procedure that we have implemented, using a hashtable to verify at every step that every

node occurs exactly once in the current AST. Therefore, there is no risk in practice of unintentional

node sharing.

Observe that unique variable identifiers are also applied to linear resources, even though the

name of these resources might not be displayed to the programmer. For a given linear resource, its

identifier remains the same only until the point where the resource is consumed. Further on, if

the same resource is recovered, it is assigned a fresh identifiers. One exception is for a read-only

resources. If a piece of a read-only is carved out, what remains of the resource retains its current

3
The restrictions imposed by OpenMP on the ranges of parallel for-loops essentially constraint them to fit the format

range(𝑡start, 𝑡stop, 𝑡step) , which we use for simple-for-loops.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

⌊𝑥⌋ =

���� get(𝑥) if 𝑥 ∈ Γ
𝑥 otherwise

⌊&𝑢⌋ = 𝑡 where ⌊𝑢⌋ is guaranteed to be of the form get(𝑡)
⌊*𝑢⌋ = get(⌊𝑢⌋)
⌊𝑢1 = 𝑢2⌋ = set(⌊𝑢1⌋, ⌊𝑢2⌋)
⌊𝑢1 += 𝑢2⌋ = set_add (⌊𝑢1⌋, ⌊𝑢2⌋)
⌊𝑢1[𝑢2]⌋ = ⌊𝑢1⌋[⌊𝑢2⌋]

⌊𝑢.𝑓 ⌋ =

���� get(𝑡 � 𝑓) if ⌊𝑢⌋ is of the form get(𝑡)
⌊𝑢⌋ .𝑓 otherwise

⌊𝑇 𝑥 = 𝑢; ⌋ =

���� let𝑇 𝑥 = ⌊𝑢⌋ if 𝑥 immutable
let(𝑇 *) 𝑥 = ref(⌊𝑢⌋) with 𝑥 added to Γ otherwise

⌊𝑇 𝑥 ; ⌋ = let(𝑇 *) 𝑥 = ref_uninit() with 𝑥 added to Γ

⌊for (int 𝑖=𝑢1; 𝑖<𝑢2; 𝑖+=𝑢3) 𝑢4⌋ = for(𝑖 ∈ range(⌊𝑢1⌋, ⌊𝑢2⌋, ⌊𝑢3⌋)) ⌊𝑢4⌋⌊
#pragma openmp parallel
for (int 𝑖=𝑢1; 𝑖<𝑢2; 𝑖+=𝑢3) 𝑢4

⌋
= forpar (𝑖 ∈ range(⌊𝑢1⌋, ⌊𝑢2⌋, ⌊𝑢3⌋)) ⌊𝑢4⌋

⌊for (𝑢1;𝑢2;𝑢3) 𝑢4⌋ = {⌊𝑢1⌋;while ⌊𝑢2⌋ do {⌊𝑢4⌋}; ⌊𝑢3⌋}
⌊𝑡⌋ for other terms = apply the translation recursively on every subterm

Fig. 2. Translation from C to OptiTrust’s internal 𝜆-calculus.
A global context Γ keeps track of the identifiers of mutable variables.

identifier. Symmetrically, if the carved out piece is merged back, the resulting resource retains the

same identifier as the original read-only resource.

Overall, the result of these policies of identifiers for linear resources is that, as long as the

identifier of a linear resource is unchanged, it is known that the contents of memory associated

with that resource is unmodified. Furthemore, as we will see in the next section, identifiers for

linear resources serve as key in the data structures that describe the usage information of every

subterm.

3.5 Encoding and Decoding of C Code
Fig. 2 defines our translation from C to OptiTrust’s internal language. Fig. 3 defines the reciprocal

translation. In the figures, we write ⌊𝑢⌋ the encoding of a C term 𝑢 (which could be either a

statement or an expression). We write ⌈𝑡⌉ the decoding of an OptiTrust term 𝑡 .

The encoding process essentially performs two tasks: (1) it eliminates the notion of l-value, instead

manipulating addresses explicitly; (2) it eliminates stack-allocated mutable variables, viewing them

like heap-allocated data; The decoding process applies exactly the opposite steps.

As mentioned earlier, during the encoding, a number of “style” annotations can be attached

to the terms produced, in order to guide the decoding phase and ensure the round-trip property.

Importantly, these annotations do not matter with respect to the semantics. It is always safe to

drop annotations in the OptiTrust AST. Fig. ?? omits the details about annotations.

We prove the round-trip theorem: if 𝑢 is a valid C program, and if 𝑢 does not contain spurious

&*u or *&u patterns, then ⌊𝑢⌋ is well-defined and ⌈⌊𝑢⌋⌉ = 𝑢. (If the spurious patterns occur, they are

simply eliminated by the round-trip.)

4 TARGETS IN OPTITRUST
[WORK IN PROGRESS]

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:13

⌈𝑡⌉L =

���� 𝑢 if ⌈𝑡⌉ is of the form &𝑢

* ⌈𝑡⌉ otherwise

⌈𝑥⌉ =

���� &𝑥 if 𝑥 ∈ Γ
𝑥 otherwise

⌈get(𝑡)⌉ = ⌈𝑡⌉L
⌈set(𝑡1, 𝑡2)⌉ = ⌈𝑡1⌉L = ⌈𝑡2⌉
⌈set_add (𝑡1, 𝑡2)⌉ = ⌈𝑡1⌉L += ⌈𝑡2⌉
⌈𝑡1[𝑡2]⌉ = ⌈𝑡1⌉[⌈𝑡2⌉]
⌈𝑡 .𝑓 ⌉ = ⌈𝑡⌉ .𝑓
⌈𝑡1 ⊞ 𝑡2⌉ = &⌈𝑡1⌉[⌈𝑡2⌉]
⌈𝑡 � 𝑓 ⌉ = &⌈𝑡⌉L .𝑓

⌈𝑢.𝑓 ⌉ =

���� get(𝑡 � 𝑓) if ⌈𝑢⌉ is of the form get(𝑡)
⌈𝑢⌉ .𝑓 otherwise

⌈let(𝑇 *) 𝑥 = ref_uninit()⌉ = 𝑇 𝑥 ; with 𝑥 added to Γ

⌈let(𝑇 *) 𝑥 = ref(𝑡)⌉ = 𝑇 𝑥 = ⌈𝑡⌉; with 𝑥 added to Γ

⌈let𝑇 𝑥 = 𝑡⌉ = 𝑇 𝑥 = ⌈𝑡⌉; for other let-bindings
⌈for(𝑖 ∈ range(𝑡1, 𝑡2, 𝑡3)) 𝑡4⌉ = for (int 𝑖=⌈𝑡1⌉; 𝑖<⌈𝑡2⌉; 𝑖+=⌈𝑡3⌉) ⌈𝑡4⌉

⌈forpar (𝑖 ∈ range(𝑡1, 𝑡2, 𝑡3)) 𝑡4⌉ =

{
#pragma openmp parallel
for (int 𝑖=⌈𝑡1⌉; 𝑖<⌈𝑡2⌉; 𝑖+=⌈𝑡3⌉) ⌈𝑡4⌉

⌈{𝑡1;while 𝑡2 do {𝑡4}; 𝑡3}⌉ = for (𝑡1; 𝑡2; 𝑡3) 𝑡4 if term annotated as for-loop
⌈𝑡⌉ for other terms = apply the translation recursively on every subterm

Fig. 3. Translation from OptiTrust’s internal 𝜆-calculus back to C.
A global context Γ keeps track of the identifiers of mutable variables.

5 COMPUTING PROGRAM RESOURCES
As we have illustrated through Section 2, resource typing is key to obtaining information that is

precise sufficiently for justifying numerous practical code transformations. This section explains

the details of the type checking algorithms, as well as the design choices behind it.

5.1 Overview of the typing strategy
As we have seen through examples, typing with resources requires a number of ghost operations

for rearranging the view on memory/resources. In our design, some of these ghost operations are

materialized as ghost instructions that appear explicitly in sequences, whereas certain classes of

ghost operations are performed on-the-fly. Let us motivate this design choice.

We are seeking for a good tradeoff between:

• robustness of type-checking (after a transformation, code needs to remain well-typed)

• understandability of transformations (the user needs to see ghosts to understand why a

transformation fails to apply)

• readability of transformed programs (too many ghosts harm readability)

• effort for writing the initial program (ghosts are very tedious to write)

• efficiency of typechecking (inferring ghosts may be costly)

The most important criteria is robustness. If we have too many implicit ghost operations, then

type-checking becomes fragile: a local modification on a well-typed program may turn it into an

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

ill-typed program with no obvious way of fixing it. Besides, inferring implicit ghost operations

over and over again can be quite costly, and limit scalability.

Can we go for fully explicit, i.e. have ghost operations all explicit? Then, the code becomes hard

to read, and every harder to write. Let us separate the two matters.

For reading code, we could attempt to mitigate the issue by hiding certain ghost operations.

Yet, hiding instructions makes it harder to get a target system to work well. Instead, we carved a

carefully-chosen set of ghost operations that represent a significant fraction of ghost operations,

and that we know can be robustly recovered after code transformations. We go implicit for these

ghost operations, and explicit for all others.

There remains the challenge of making it realistic to write the unoptimized code. Our initial

attempts at case studies revealed that even with the policy above, it appears too tedious for the

user to write numerous ghost operations and loop contracts, even if seeing those information is

useful for subsequently transforming the code.

We therefore opted for an approach where we perform an advanced elaboration phase for the

original input code, to infer a number of ghost operations. After this initial elaboration phase, the

typechecking algorithm remains simple. (We can afford to spend more time on typechecking the

first AST than on typechecking all the pieces of AST that are subsequently produced during the

execution of the transformation script.)

In what follows, we first describe the typechecking algorithms, and only afterwards describe

the elaboration algorithm. We also present the loop contract minimization algorithm, which is

useful both for the elaboration algorithm and is used as postprocessing for most loop-based

transformations.

5.2 Top-down typechecking and bottom-up summaries
Our typechecking algorithm is a top-down algorithm. This approach has the following benefits:

• Efficiency: typechecking is performed in a single pass over the AST.

• Simplicity: the typing rules are standard and simple

• Explainability: if a type error is reported at a location, then this error depends only on the

code and types of what comes before that location.

Once typechecking is completed, we know for every statement what resources it consumes and

produces. To verify the validity of transformations, and to compute the results of transformations,

it helps a lot to have efficient access to a different presentation of the same information. Typically,

we need to know for each resource how it used by the statements that depend on it. The "usage"

can be read-write, read-only, consumed, etc.

All these informations are attached to the AST nodes.

For technical reasons explained later, we sometimes need to store in the pure context what we

call existential fractions. These are abstract fractions that can be chosen later during the typing, as

long as some constraints are respected. When present, these existential fractions are stored along

with their constraints in a separate field 𝐸′
in a context ⟨𝐸 | 𝐸′ | 𝐹 ⟩.

5.3 Resource sets
In our system, a typing context consists of typed variables (also called pure resources) and linear
resources. Our typing algorithm computes the set of resources at every program point.

Pure resources. The pure part of a typing context contains bindings of the form “𝑥 : 𝜏”. The

variable 𝑥 may be either a program variable, in which case 𝜏 corresponds to its C type ; or a ghost

variable, in which case 𝜏 can be any mathematical type. A mathematical type can be thought of as

Coq types (or types of another higher order logic). In particular, it includes types such as Z, finite

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:15

Heap predicate C syntax Description

𝑝 ⇝ Cell𝜏 𝑝 ⇝ Cell permission to access the cell at address 𝑝 of type 𝜏

𝑝 ⇝ Matrix1𝜏 (𝑛) 𝑝 ⇝ Matrix1(𝑛) permission on an array of length 𝑛

𝑝 ⇝ Matrix2𝜏 (𝑚,𝑛) 𝑝 ⇝ Matrix2(𝑚, 𝑛) permission on a𝑚 × 𝑛 matrix

★𝑖∈𝑟 𝐻 (𝑖) for 𝑖 in 𝑟 -> 𝐻 (𝑖) union of permissions 𝐻 (𝑖) for each index 𝑖 in 𝑟

𝛼𝐻 _RO(𝛼, 𝐻) read-only permission on 𝐻 with fraction 𝛼

Uninit(𝐻) _Uninit(𝐻) permission on 𝐻 disallowing reads before write

Fig. 4. Common heap predicates

or infinite sets, but also C types (viewed as a deep embedding). Mathematical types also include

propositions: for example 𝑝 : 𝑛 > 0 describes a proof 𝑝 establishing 𝑛 > 0. In summary, the pure

part of a typing context is an interleaving of a traditional program typing context and of a Coq

context.

Linear resources. The linear part of a typing context contains bindings of the form “𝑦 : 𝐻”. The

resource name𝑦 is used in particular for the usage maps to refer to this resource. The heap predicate

𝐻 describes ownership of part of the memory. Fig. 4 summarizes the most common heap predicates,

which have already been discussed in Section ??, in particular, 𝑝 ⇝ Matrix1𝜏 (𝑛) is syntactic sugar
for★𝑖∈0..𝑛 𝑝 [𝑖] ⇝ Cell𝜏 . Likewise, 𝑝 ⇝ Matrix2𝜏 (𝑛, 𝑚) denotes★𝑖∈0..𝑛★𝑗∈0..𝑚 𝑝 [𝑖] [𝑗] ⇝ Cell𝜏 .

Read-only fractions. Following standard separation logic, we represent read-only permissions

using fractional resources. Intuitively, possessing a non-null fraction of a linear resource gives

read-only access. Possessing the full fraction (i.e. one) of a resource gives read-write access. The

pair of the resources 𝛼𝐻 ★ 𝛽𝐻 entails (𝛼 + 𝛽)𝐻 , and reciprocally. In practice, when we have 𝛼𝐻 at

hand, we can carve out a subfraction 𝛽𝐻 , leaving as remainder (𝛼 − 𝛽)𝐻 . We carve out subfractions

in such a way each time we need to provide a read-only permission. This strategy ensures that we

always keep at hand a fraction of the read-only permission. At some point, we need to merge back

𝛽𝐻 and (𝛼−𝛽)𝐻 into the original 𝛼𝐻 . Because the carve-out operation can be performed in cascade,

and that merge-back operations can be performed in any order, we need a general simplification

operation. We call this operation CloseFracs. Formally, CloseFracs repeats the following rewrite
rule:

(𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻 ★ (𝛽𝑖 −𝛾1 − ... −𝛾𝑚)𝐻 −→ (𝛼 − 𝛽1 − ... − 𝛽𝑖−1 −𝛾1 − ... −𝛾𝑚 − 𝛽𝑖+1 − ... − 𝛽𝑛)𝐻

If we start with a full permission 𝐻 , that is 1𝐻 , whatever the order in which we carve out and

merge back fractions of 𝐻 , we ultimately recover 𝐻 in full.

Permissions on uninitialized cells. A standard separation logic for C code ensures that there is

no reads of an uninitialized memory cell, because it would be undefined behavior. To achieve

this a read is allowed with permission 𝑝 ⇝ 𝑣 but with a side condition that 𝑣 ≠ ⊥, where ⊥ is

a special token denoting uninitialized content. Rather than introducing 𝑝 ⇝ ⊥ in our logic, we

introduce permissions of the form Uninit(𝐻) to describe not only individual uninitialized cells

but also uninitialized arrays and matrices. Concretely, Uninit(𝑝 ⇝ Cell) corresponds to 𝑝 ⇝ Cell
with the additional constraint that reading the memory at location 𝑝 is forbidden. For a matrix,

Uninit(𝑝 ⇝ Matrix2(𝑚, 𝑛)) corresponds to★𝑖∈0..𝑛★𝑗∈0..𝑚 𝑝 [𝑖] [𝑗] ⇝ ⊥. At this time, we do not

attempt to provide a definition of Uninit(𝐻) for arbitrary 𝐻 , but only for those built as iterations

over cells. If Uninit(𝐻) is well-defined, it can be obtained by weakening from 𝐻 .

Notations for resource sets. In this paper, we use the notation ⟨𝑥0 : 𝜏0, ..., 𝑥𝑛 : 𝜏𝑛 | 𝑦0 : 𝐻0, ..., 𝑦𝑛 :

𝐻𝑛⟩ to denote a resource set where 𝑥𝑖 are pure resources of type 𝜏𝑖 , and 𝑦𝑖 are linear resources of

type 𝐻𝑖 . Moreover, certain bindings 𝑥𝑖 : 𝜏𝑖 may be alias definitions of the form 𝑥𝑖 : 𝜏𝑖 := 𝑣𝑖 , which

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

corresponds to a local definition, and may also be interpreted as a singleton type. In practice, we

simply write 𝑥𝑖 := 𝑣𝑖 because 𝜏𝑖 can be inferred. In presence of an alias of the form 𝑥𝑖 : 𝜏𝑖 := 𝑣𝑖 , our

typechecker eagerly replaces 𝑥𝑖 with 𝑣𝑖 during internal unification operations.

This organization separating pure facts (either conventional bindings or alias bindings) and

linear facts is directly inspired by practical tools based on separation logic (e.g. Iris, CFML). The

pure part is a telescope: this means that 𝑥𝑖 may occur in any 𝜏 𝑗 where 𝑖 < 𝑗 . The pure variables 𝑥𝑖
also scope over the linear formulas 𝐻 𝑗 . The order of the linear resources 𝑦 𝑗 is essentially irrelevant.

(It only affects the execution of the entailment algorithm on certain instances, for example if two

resources describe a read-only permission over the same cell.)

Following the practice of proof assistants, resources names that are nowhere mentioned may be

hidden. For example the context, ⟨𝑝 : ptr, 𝑛 : int, 𝑛 > 0 | 𝑝 ⇝ Cellint⟩ contains two anonymous

resources: 𝑛 > 0 and 𝑝 ⇝ Cellint.
As syntactic sugar, we define [𝑥0 : 𝜏0, ..., 𝑥𝑛 : 𝜏𝑛] as ⟨𝑥0 : 𝜏0, ..., 𝑥𝑛 : 𝜏𝑛 | ∅⟩.
Besides, we define 𝛼 (𝑦0 : 𝐻0, ..., 𝑦𝑛 : 𝐻𝑛) as (𝑦0 : 𝛼𝐻0, ..., 𝑦𝑛 : 𝛼𝐻𝑛) to distribute a fraction over

a list of linear resources.

Operators on resource sets. In general, a context Γ takes the form ⟨𝐸 | 𝐹 ⟩.
We define the projections Γ.pure = 𝐸 and Γ.linear = 𝐹 .

We define Γ1 ★ Γ2 as ⟨Γ1.pure, Γ2.pure | Γ1 .linear, Γ2.linear⟩, where the comma indicates list

concatenation.

We also define iterated conjunction, which is used in particular in the typing rule for for-loops.

We define★𝑘∈𝑟 Γ where 𝑘 occurs in Γ. Essentially this formula builds the separating conjunction of

the linear resources, and replaces the pure variables of Γ with variables denoting indexed families.

For example, in first approximation, if 𝑥 of type bool appears in Γ, then 𝑥 of type int → bool
appears in★𝑘∈𝑟 Γ. More generally, if 𝑥 of type 𝜏 appears in Γ, then 𝑥 of type ∀𝑘 ∈ 𝑟, 𝜏 appears in

★𝑘∈𝑟 Γ. Formally,★𝑘∈𝑟 Γ is defined as:

★
𝑘∈𝑟

⟨𝑥0 : 𝜏0, ..., 𝑥𝑛 : 𝜏𝑛 | 𝑦0 : 𝐻0, ..., 𝑦𝑛 : 𝐻𝑛⟩ := ⟨𝑥0 : 𝜏 ′0, ..., 𝑥𝑛 : 𝜏 ′𝑛 | 𝑦0 : 𝐻 ′
0
, ..., 𝑦𝑛 : 𝐻 ′

𝑛⟩

where

{
𝜏 ′𝑖 := ∀𝑘 ∈ 𝑟 . Subst{𝑥 𝑗 := 𝑥 𝑗 (𝑘) | 𝑗 < 𝑖}(𝜏𝑖)
𝐻 ′
𝑖 := ★𝑘∈𝑟 Subst{𝑥 𝑗 := 𝑥 𝑗 (𝑘)}(𝐻𝑖)

Substitutions, specialization and renaming in resource sets. First, we let Subst{𝜎}(𝑋) denote the
substitution of the bindings 𝜎 , inside the entity 𝑋 . Each binding in 𝜎 maps a variable name to a

value (possibly another variable name). For example, Subst{𝑥 := 𝑣}([𝑦 : int, 𝑃 : 𝑦 = 𝑥]) evaluates
to [𝑦 : int, 𝑃 : 𝑦 = 𝑣]. As explained in the previous section, our use of variable identifiers means

that we do not need to deal with shadowing. We therefore consider to be an error to evaluate

Subst{𝜎}(𝑋) in case a key of 𝜎 occurs as a binding name in 𝑋 .

Second, we introduce the operation Specialize{𝜎}(Γ) to eliminate certain bindings from Γ,
substituting the corresponding occurrences with specified values. This operation assumes dom(𝜎)
to be included in set of keys of Γ.pure. Concretely, Specialize{𝑥 := 𝑣}(⟨𝐸1, 𝑥 : 𝜏, 𝐸2 | 𝐹 ⟩) evaluates
to ⟨𝐸1, Subst{𝑥 := 𝑣}(𝐸2) | Subst{𝑥 := 𝑣}(𝐹)⟩. More generally,

Specialize{𝜎}(⟨𝑥 : 𝜏, 𝐸 | 𝐹 ⟩) :=

{
Specialize{𝜎 ′}(Subst{𝑥 := 𝑣}(⟨𝐸 | 𝐹 ⟩)) when 𝜎 = {𝑥 := 𝑣} ⊎ 𝜎 ′

[𝑥 : 𝜏] ★ Specialize{𝜎}(⟨𝐸 | 𝐹 ⟩) when 𝑥 ∉ dom(𝜎)
Specialize{∅}(⟨𝐸 | 𝐹 ⟩) := ⟨𝐸 | 𝐹 ⟩

Third, we define Rename{𝜌}(Γ) to rename certain keys from Γ. Here, 𝜌 denotes a map from

certain variable names bound by Γ to distinct fresh variables. For example, Rename{𝑥 := 𝑥 ′}(⟨𝐸1, 𝑥 :

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:17

𝜏, 𝐸2 | 𝐹 ⟩) evaluates to ⟨𝐸1, 𝑥 ′ : 𝜏, Subst{𝑥 := 𝑥 ′}(𝐸2) | Subst{𝑥 := 𝑥 ′}(𝐹)⟩. Rename can also be

used to rename the linear resources: for example Rename{𝑦 := 𝑦′}(⟨𝐸 | 𝐹1, 𝑦 : 𝐻, 𝐹2⟩) evaluates to
⟨𝐸 | 𝐹1, 𝑦′ : 𝐻, 𝐹2⟩.
Technically, as explained earlier, contexts include a third component storing existential fractions.

The substitution, specialization, renaming and refreshing operators apply in this component as

well.

5.4 Contracts
Certain terms like functions, loops, and certains conditionals, carry a user-provided contract that

guides the typing algorithm, providing information that would be hard or costly to infer.

Function contracts. A function definitions annotatedwith a contract𝛾 takes the form fun(𝑎1, ..., 𝑎𝑛)𝛾 ↦→
𝑡 . Here 𝛾 consists of two resource sets, one for the pre-condition, one for the post-condition. For-

mally, we write it {pre = Γ𝑝𝑟𝑒 ; post = Γ𝑝𝑜𝑠𝑡 }. The pre-condition Γ𝑝𝑟𝑒 may refer to the formal

parameters 𝑎𝑖 , as well as the surrounding context. The post-condition Γ𝑝𝑜𝑠𝑡 may refer not only to

the same variables as the pre-condition, but also the pure variables bound in the pre-condition.

Loop contracts. A for-loop annotated with a contract 𝜒 takes the form for (𝑖 ∈ 𝑟)𝜒 {𝑡}. Here
𝜒 consists of a structured record that binds per-iteration resources 𝛾 , shared reads 𝐹 , sequential

invariants Γ, as well as a set of variables 𝐸 that scope over those three entities. The resource set 𝛾

has the same type as a function contract. 𝐹 should contain only splittable resources—in practice,

only read-only resources. Γ corresponds to a standard loop invariant in sequential separation logic.
vars = 𝐸 Pure variables, common between all loop contract fields
excl = 𝛾 Function contract for resources used exclusively at one iteration

shrd =

{
reads = 𝐹 Read only resources shared between iterations
inv = Γ Sequential invariant (may depend on the loop index)

As we will see later in typing rule, the loop body is typechecked in a context that binds 𝑖 of type int,
an hypothesis of type 𝑖 ∈ 𝑟 , the variables of 𝐸, the resources 𝛾 .pre, (subfractions of) the resources in
𝐹 and Γ. The loop body needs to produce the resources 𝛾 .post, it needs to give back the resources

from 𝐹 that it recieved, and produce the resources Subst{𝑖 := 𝑖 + 1}(Γ). The latter corresponds to
the invariant at the begining of the next iteration.

A loop is parallelizable if and only if it admits a loop contract 𝜒 with an empty sequential

invariant (that is 𝜒.shrd.inv = ∅). We write parallelizable(𝜒) in this case.

5.5 Typechecking of terms
Triples. Our typing judgement takes the form {Γ} 𝑡 {Γ′}, capturing the fact that, in context Γ

the term 𝑡 is well typed and produces a context Γ′. If 𝑡 has a return value, then, by convention, it is

described in Γ′ under the name res. If, moreover, this return value can be expressed by a simple

logical expression, then res is bound as an alias in Γ′. This pattern will be illustrated for example

in the typing rule for values.

In a triple {Γ} 𝑡 {Γ′}, the postcondition Γ′ repeats all the pure entries of the precondition Γ.
The pure entries that appear in Γ′ but not in Γ may correspond: (1) to the entry for res, which
denotes the result value produced by 𝑡 , and (2) to a number of ghost variables that correspond to

existentially quantified variables of the postcondition of 𝑡 . The linear entries of Γ′ may be arbitrarily

modified compared with those in Γ, reflecting on the side-effects performed by 𝑡 .

Typing rules. In the rest of this section we discuss the typing rules of our system. We choose

here an algorithmic presentation, where the frame computation is explicit. Therefore the choice

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

of the rule to apply is entirely driven by the structure of the program. Algorithmically, when we

check a triple {Γ} 𝑡 {Γ′}, Γ and 𝑡 are inputs whereas Γ′ is an output.

When the typing algorithm checks that a postcondition is met, it verifies that an entailment
holds. We denote Γ ⇒ Γ′ such entailment. Formally, Γ ⇒ Γ′ holds if there exist a map 𝜎 with an

entry 𝑥 := 𝑣 for each pure variable 𝑥 : 𝜏 in Γ′ where 𝑣 has type 𝜏 in Γ such that there is a bijection

between linear resources of Γ and linear resources of Specialize{𝜎}(Γ′) that can be unified together.

When there is a contract instantiation, we need to check that we can instantiate all the pure

variables required by the contract, and provide all the linear resources consumed. For that we use a

context subtraction operation Γ ⊖ Γ′ that fails if resources in Γ′ cannot be found in Γ and return

Some (𝜎, 𝐹) otherwise. In the latter case, 𝜎 is a map from pure variables of Γ′ to instantitation

values constructed in the context Γ, and 𝐹 is the subset of linear resources from Γ that are left after

intantiating all linear resources from Γ′. More formally, when Some (𝜎, 𝐹) = Γ ⊖ Γ′, 𝐹 is one of

the strongest linear resource sets such that dom(𝜎) = Γ.pure and that Γ ⇒ Specialize{𝜎}(Γ′) ★ 𝐹 .

The entailment algorithm that decides if premises of the form Γ ⇒ Γ′ holds an how Γ ⊖ Γ′ is
computed will be discussed in next section.

Pure values. The simplest typing rule is the rule for pure values. Pure values consist of program

variables and constant literals. Pure values can also be constructed from ghost variables and by the

application of a pure operator, but these never appear directly in the program source code. When

typing such expression, we simply remember an alias from res to the value itself.

Note that reading the value of a mutable program variable 𝑥 is not a pure value, since it is

encoded as the call 𝑔𝑒𝑡 (𝑥).

𝑣 ::= 𝑥 Variable
| N Integer literal
| F Float literal
| 𝑣 ⊞ 𝑣 Pure operation

Rule for let-bindings. A let-binding let 𝑥 = 𝑡 stores the result of the expression 𝑡 in a variable

called 𝑥 . Since inside the result of 𝑡 is defined as a binding of the special variable res, we only have

to rename this special variable to the intended name 𝑥 . The postcondition of the let-binding itself

does not mention res anymore, and this is normal since the let-binding itself does not have a return

value. Seeing a let-binding as an instruction in a sequence is unusal in a functional setting, but our

sequences containing let-bindings are isomorphic to let-in chains. Note that let-bindings do not

manage scopes by themselves, as scopes are managed by the typing rule for sequence.

Sequence of instructions. The rule for typing a sequence embeds the fact that instructions are

executed one after each other by threading a context through the instructions. Since each instruction

might have an ignored return value if it is not a let-binding, we replace it by a ghost value of the

same type by renaming the return value placeholder res with a fresh variable name. If the last

instruction of the sequence has a return value, we consider it is the return value of the whole

sequence. The temporary 𝑥𝑛 in the rule is only here for symmetry with other instructions, in

practice we omit both renamings mentioning 𝑥𝑛 .

Sequence is the only constructor that delimits a new scope of program variable. We take a

conservative approach for pure typing context scopes: when a sequence is exited, each immutable

program varaible that goes out of scope is generalized as a ghost variable. This is a no-op in practice

since all the program variables are already in the context. This approach ensures that we never

lose information that may be needed later in the resource computation. However, this policy of

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:19

Val

{Γ} 𝑣 {Γ ★ [res := 𝑣]}

Let

{Γ0} 𝑡 {Γ1} Γ2 = Rename{res := 𝑥}(Γ1)
{Γ0} let 𝑥 = 𝑡 {Γ2}

Seq

𝑥𝑖 fresh ∀𝑖 ∈ [1, 𝑛] . {Γ𝑖−1} 𝑡𝑖 {Γ′𝑖 } ∧ Γ𝑖 = Rename{res := 𝑥𝑖 }(Γ′𝑖)

Γ𝑟 =

{
Rename{𝑥𝑖 := res}(Γ𝑛) if 𝑡𝑖 is of the form “let res = 𝑡 ′𝑖 ”
Γ𝑛 otherwise
Some (∅, Γ𝑓) = Γ𝑟 ⊖ StackAllocCells(𝑡1, ..., 𝑡𝑛)

{Γ0}
(
𝑡1; ...; 𝑡𝑛

)
{Γ𝑓 }

Fun

{[Γ0.pure] ★ [𝑎1 : 𝜏1, ..., 𝑎𝑛 : 𝜏𝑛] ★ 𝛾 .pre} 𝑡 {Γ1} Γ1 ⇒ 𝛾 .post
𝑃 = {[𝑎1 : 𝜏1, ..., 𝑎𝑛 : 𝜏𝑛] ★ 𝛾 .pre} res(𝑎1, ..., 𝑎𝑛) {𝛾 .post}

{Γ0}
(
fun(𝑎1 : 𝜏1, ..., 𝑎𝑛 : 𝜏𝑛)𝛾 ↦→ 𝑡

)
{Γ0 ★ [𝑃]}

Subexpr

𝑥𝑖 fresh ∀𝑖 ∈ [0, 𝑛] . {Γ𝑖 } 𝑡Δ𝑖

𝑖
{Γ′𝑖 } ∀𝑖 ∈ [0, 𝑛] . Γ̂𝑖 , ˆΓ′

𝑖
, Γ𝑖+1 = Minimize(Γ𝑖 , Γ′𝑖 , Δ𝑖)

Γ𝑐 = CloseFracs(Γ𝑛+1 ★★𝑖∈[0,𝑛] Rename{res := 𝑥𝑖 }(ˆΓ′𝑖)) {Γ𝑐 } 𝐸 [𝑥0, ..., 𝑥𝑛] {Γ𝑝 }
{Γ0} 𝐸 [𝑡0, ..., 𝑡𝑛] {Γ𝑝 }

App

dom(𝜌) = dom(𝛾 .post) im(𝜌) ∩ dom(Γ0) = ∅
Γ0 ∋ {𝛾 .pre} 𝑥0 (𝑎1, ..., 𝑎𝑛) {𝛾 .post} Some (𝜎 ′, Γ𝑓) = Γ0 ⊖ Specialize{𝑎𝑖 := 𝑥𝑖 , 𝜎}(𝛾 .pre)

Γ𝑝 = CloseFracs(Γ𝑓 ★ Rename{𝜌}(Subst{(𝑎𝑖 := 𝑥𝑖), 𝜎, 𝜎 ′}(𝛾 .post)))
{Γ0} 𝑥0 (𝑥1, ..., 𝑥𝑛)𝜎,𝜌 {Γ𝑝 }

For

Some (𝜎, Γ𝑓) = Γ0 ⊖ [𝜒.vars] ★ (★𝑖∈𝑟 𝜒.excl.pre) ★ 𝜒.shrd.reads ★ Subst{𝑖 := 𝑟 .𝑓 𝑖𝑟𝑠𝑡}(𝜒.shrd.inv)
Γ1 = [𝑖 : int, 𝑖 ∈ 𝑟] ★ [𝜒.vars] ★ 𝜒.excl.pre ★ 1

𝑟 .𝑙𝑒𝑛
𝜒.shrd.reads ★ 𝜒.shrd.inv

{Γ1} 𝑡𝑏 {Γ2} Γ2 ⇒ 𝜒.excl.post ★ 1

𝑟 .𝑙𝑒𝑛
𝜒.shrd.reads ★ Subst{𝑖 := 𝑟 .𝑛𝑒𝑥𝑡 (𝑖)}(𝜒.shrd.inv)

Γ3 = CloseFracs(Γ𝑓 ★ Subst{𝜎}(★𝑖∈𝑟 𝜒.excl.post ★ 𝜒.shrd.reads ★ Subst{𝑖 := 𝑟 .𝑙𝑎𝑠𝑡}(𝜒.shrd.inv)))
𝜋 = parallel → parallelizable(𝜒)

{Γ0} for 𝜋 (𝑖 ∈ 𝑟)𝜒 𝑡𝑏 {Γ3}

If

{Γ0} 𝑡0 {Γ′0 } {Subst{res := true}(Γ′
0
)} 𝑡1 {Γ1} {Subst{res := false}(Γ′

0
)} 𝑡2 {Γ2}

(Γ3 synthetized by another algorithm) Γ1 ⇒ Γ3 Γ2 ⇒ Γ3
{Γ0} if 𝑡0 then 𝑡1 else 𝑡2 {Γ3}
Fig. 5. Rules of our typesystem

never forgetting any variable tends to blow up pure context size, and we should apply some context

filtering in future work.

For the stack allocated variables that go out of scope we need to consume their cells at the end of

the sequence. The operator StackAllocCells(𝑡1, . . . , 𝑡𝑛) returns the resource set of cells that were

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

{[𝑣 : 𝜏]} ref(𝑣) {[res : ptr] ★ res⇝ Cell𝜏 }
{} ref_uninit() {[res : ptr] ★ Uninit(res⇝ Cell𝜏)}
{} alloc() {[res : ptr] ★ Uninit(res⇝ Cell𝜏)}

{[𝑝 : ptr] ★ 𝑝 ⇝ Cell𝜏 } get(𝑝) {[res : 𝜏] ★ 𝑝 ⇝ Cell𝜏 }
{[𝑝 : ptr, 𝑣 : 𝜏] ★ Uninit(𝑝 ⇝ Cell𝜏)} set(𝑝, 𝑣) {𝑝 ⇝ Cell𝜏 }

{[𝑝 : ptr] ★ Uninit(𝑝 ⇝ Cell𝜏)} free(𝑝) {}
Fig. 6. Contracts of built-in functions

allocated on the stack at top-level. Formally,

StackAllocCells(𝑡1, ..., 𝑡𝑛) := StackAllocCell(𝑡1) ★ · · · ★ StackAllocCell(𝑡𝑛)

StackAllocCell(𝑡) :=

{
𝑝 ⇝ Cell𝜏 if 𝑡 is of the form “let 𝑝 = stackalloc(𝜏)”
∅ otherwise

Function abstraction. When typing a function abstraction, the typing algorithm leverages the

user-provided function contract 𝛾 and checks that it is respected by the function body 𝑡 . The body

itself it typed in a context capturing all the pure resources from the outside context, adding the

function arguments and the pure precondition of the contract. There is no implicit capture of

the linear context, therefore the linear resources available for typing the body 𝑡 only consist of

the linear resources of the precondition 𝛾 .pre. After typing the body of the function, the type-

checker verifies that the output context entails the postcondition 𝛾 .post. The function abstraction

itself is a pure operation that simply add a binding for res as a function of spec 𝛾 . The syntax

{𝛾 .pre} res(𝑎1, ..., 𝑎𝑛) {𝛾 .post} defines a binding for res as a function with contract 𝛾 . In the rule

we made explicit the fact that the function contracts stored in the typing context always include all

the arguments, but in the user annotation the function arguments are implicitly bound.

Function calls. In C, function calls evaluates their arguments in an arbitrary order. In our typing

rules, we chose to separate the unordered evaluation of function arguments in the rule Subexpr

and the actual function call App performed right after.

Subexpr evaluates arguments subexpressions in parallel ensuring there is no interference be-

tween them. In this rule 𝐸 [𝑡0, ..., 𝑡𝑛] is a multi evaluation context where all the 𝑡𝑖 are in position

of evaluation. For function calls, each 𝑡𝑖 is one of the arguments that needs to be evaluated and is

replaced by a simple variable 𝑥𝑖 to enable using the App rule.

To be more precise the Subexpr rule is an algorithmic version of the equivalent more standard

rule Subexpr’ defined below. As written in Subexpr’, in principle, to type in parallel multiple

subexpressions, we need to find a way to split the linear resources available such that each subex-

pression can be typed with a separate set of resources. Then we can merge the postconditions of

all subexpression with leftover resources that were not used by any subexpression, before typing

the surrounding function call.

Subexpr’

Γ0 ⇒
(
★𝑖∈[0,𝑛] Γ̂𝑖

)
★ Γ̂𝑟

∀𝑖 ∈ [0, 𝑛] . {Γ̂𝑖 } 𝑡Δ𝑖

𝑖
{ ˆΓ′′

𝑖
} ˆΓ′

𝑖
= ⟨ ˆΓ′′

𝑖
.pure ∩ 𝑒𝑛𝑠𝑢𝑟𝑒𝑑 (Δ̂𝑖) | ˆΓ′′

𝑖
.linear⟩

Γ𝑐 = CloseFracs(Γ̂𝑟 ★★𝑖∈[0,𝑛] Rename{res := 𝑥𝑖 }(ˆΓ′𝑖)) {Γ𝑐 } 𝐸 [𝑥0, ..., 𝑥𝑛] {Γ𝑝 }
{Γ0} 𝐸 [𝑡0, ..., 𝑡𝑛] {Γ𝑝 }

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:21

In practice, we do not know in advance how to split the resources between subexpressions.

Therefore, the algorithmic rule Subexpr leverages the usagemapsΔ𝑖 to decide how to split resources

while typing the subexpressions. In the Subexpr rule, the first subexpression gets typed in the

full context Γ0, however while typing it, we learn that only Γ̂0 is actually needed, and that Γ1 was
untouched. Therefore we can use this Γ1 as the typing context for the next subexpression without

risking to create an interference. It follows that, by using the Γ̂𝑖 iteratively found in Subexpr, the

rule Subexpr’ is applicable whenever Subexpr is. Note that two subexpressions can still share a

read only permission of the same resource 𝐻 . This is possible because the first subexpression 𝑡𝑖
will only keep a subfraction 𝛼𝐻 of the resource (for any positive 𝛼) in its minimized precondition

Γ̂𝑖 and leave (1 − 𝛼)𝐻 in Γ𝑖+1 as a resource available for subsequent subexpressions. The second
subexpression 𝑡 𝑗 using 𝐻 will then keep 𝛽𝐻 in Γ̂𝑗 and leave (1 − 𝛼 − 𝛽)𝐻 in Γ𝑗+1.

We introduce the operationMinimize(Γ, Γ′, Δ) the operation on a precondition Γ, a postcondition
Γ′ and a usage map Δ. Typically these three arguments come from a valid typing judgement

{Γ} 𝑡Δ {Γ′}. Minimize returns a triple (Γ̂, Γ̂′, Γ𝑓) such that {Γ̂} 𝑡Δ {Γ̂′}, and intuitively Γ𝑓 is a

maximal frame removed from both Γ and Γ′.

• Γ̂ is aminimized precondition that contains resources of Γ or weakened versions of resources

of Γ. The selection of resources is guided by Δ. In particular, when Δ tells that a given

resource 𝑦 : 𝐻 is used in read only mode, we weaken it to an arbitrary subfraction 𝛼𝐻 .

Similarly, when Δ tells that a given resource 𝑦 : 𝐻 is used as an uninitialized varaible we

weaken it as Uninit(𝐻). Formally,

Γ̂ = [Γ.pure ∩ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (Δ)] ★ (Γ.linear ∩ full(Δ))
(★ IntoRO(Γ.linear ∩ RO(Δ))) ★ (IntoUninit(Γ.linear ∩ Uninit(Δ)))

where

IntoRO(𝑦 : 𝛼𝐻, 𝐹) = [𝛽 : frac] ★ (𝑦 : 𝛽𝐻) ★ IntoRO(𝐹)
IntoRO(𝑦 : 𝐻, 𝐹) = [𝛼 : frac] ★ (𝑦 : 𝛼𝐻) ★ IntoRO(𝐹) where 𝐻 is not of the form 𝛼𝐻

IntoRO(∅) = ∅
IntoUninit(𝑦 : Uninit(𝐻), 𝐹) = 𝑦 : Uninit(𝐻) ★ IntoUninit(𝐹)

IntoUninit(𝑦 : 𝐻, 𝐹) = 𝑦 : Uninit(𝐻) ★ IntoUninit(𝐹) where 𝐻 is not of the form Uninit(𝐻)
IntoUninit(∅) = ∅

Note that IntoRO and IntoUninit need only be defined on resources that have been recorded

with a usage RO or Uninit respectively.

• Γ𝑓 is the maximal frame. It is a context such that Γ ⇒ Γ̂ ★ Γ𝑓 . We put all the pure varaibles

from Γ in Γ𝑓 .

• Γ̂′ is the new postcondition after removing the frame Γ𝑓 in Γ′.

The rule App for the function application searches in the context Γ0 a specification for the

called function. Then, it instantiates the precondition of the function by finding a pure variable

substitution 𝜎 ′
, and consuming pure resources in Γ0 thus creating the frame context Γ𝑓 . Then it add

the instantiated post-condition to Γ𝑓 and try to close fractions. The user or the transformations

may provide two additional annotations 𝜎 and 𝜌 that influence this step. 𝜎 is a partial instantiation

context for pure variables in the contract. Each binding 𝑥 := 𝑣 , where 𝑥 is a pure variable of the

function precondition forces to instantiate it with 𝑣 . It must be used whenever the value 𝑣 cannot

be found by unification.

As we saw in earlier examples, annotated code also features calls to ghost function that transform

the resources available without performing any computation. As far as the typing algorithm is

concerned, these ghost calls can be seen as regular function calls without return value. They are

typed using the same rule as any other function without program arguments.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

6 JUSTIFYING TRANSFORMATION CORRECTNESS
We now explain how program resources are leveraged to express sufficient correctness conditions

for a collection of basic transformations. We do not further discuss the correctness of combined

transformations or entire transformation scripts in this section, because it is checked by transitivity

of basic transformation correctness.

Our correctness conditions are checked by exploiting the resource usage information computed

by our type system. For every transformation, we also explain how they produce well-typed

programs by synthesizing contracts and ghost operations, such that multiple transformations can

be chained.

When chaining multiple transformations, even on well-typed programs, it can happen that the

generated contracts and ghosts become complicated. Instead of complexifiying our basic transfor-

mations, including their correctness conditions and annotation synthesis, we rely on combined

transformations to simplify or move annotations around. For example, combined transformations

may decide to minimize contracts, to push certain ghosts upwards, downwards, or to attach ghosts

to certain instructions.

Similarly, we prefer deriving complex transformations by composition to keep basic transfor-

mations as simple as possible: for example by recursively fusing 𝑁 loops two-by-two instead of

defining a basic transformation directly fusing 𝑁 loops.

We now discuss the most interesting basic transformations operating on instructions, loops and

variables; before briefly mentioning other supported transformations.

6.1 Instruction Transformations
Moving Instructions. The Instr.move transformation allows moving a group of instructions to a

given destination. Two instructions can be safely swapped when they exclusively share read-only

resources:

𝑇1;Δ1

𝑇2;Δ2

↦−→ 𝑇2;

𝑇1;

correct when:{
notRO(Δ1) ∩ Δ2 = ∅
notRO(Δ2) ∩ Δ1 = ∅

The Concept of Span. Notice that in the previous criteria, 𝑇1 and 𝑇2 are possibly empty spans of
instructions. It is natural to query resource contexts around a span, and to query the resource usage

of a span by collapsing the usages of its instructions:

Γ1 𝑇 ;Δ Γ2 ≡ Γ1 𝑡
1
;Δ1 . . . 𝑡𝑛 ;Δ𝑛 Γ2 where Δ ≡ Δ1

; . . . ;Δ𝑛

Swapping multiple instructions by collapsing their usages is equivalent to iteratively swapping

pairs of instructions. However, it is algorithmically cheaper, requiring 𝑛 +𝑚 + 2 operations of linear

cost on Δs (;, ∩), instead of 𝑛 ×𝑚 × 2 operations. From now on, we use spans when describing

transformations.

Inserting Instructions. The Instr.insert transformation.

Deleting Instructions. The Instr.delete transformation.

6.2 Loop Transformations
Tiling Loops. The Loop.tile transformation.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:23

for 𝛾 𝑖 in 𝑟 {
𝑇 ;

}
↦−→

𝐺1;

for 𝛾𝑜 𝑖𝑜 in 𝑟𝑜 {
for 𝛾𝑖 𝑖𝑖 in 𝑟𝑖 {

Subst{𝑖 := new_i(𝑖𝑜 , 𝑖𝑖)}(𝑇);
}

}
𝐺2;

always correct:

𝐺1 :★
𝑖∈𝑟

𝛾 .excl.pre ⇒★
𝑖𝑜 ∈𝑟𝑜
★
𝑖𝑖 ∈𝑟𝑖

𝛾 .excl.pre

𝐺2 :★
𝑖𝑜 ∈𝑟𝑜
★
𝑖𝑖 ∈𝑟𝑖

𝛾 .excl.post ⇒★
𝑖∈𝑟

𝛾 .excl.post

𝛾𝑖 ≡ Subst{𝑖 := new_i(𝑖𝑜 , 𝑖𝑖)}(𝛾)

𝛾𝑜 ≡


vars ≡ 𝛾 .vars
shrd ≡ Subst{𝑖 := new_i(𝑖𝑜 , 𝑟𝑖 .start)}(𝛾 .shrd)
excl ≡★𝑖𝑖 ∈𝑟𝑖 𝛾𝑖 .excl

Example Ranges. Correct when tile size divides (or min etc) ghost calls: ghost tile divides + ghost

tile undivides

𝑟 = 0..(𝑛 ×𝑚)
𝑟𝑜 = 0..𝑛

𝑟𝑖 = 0..𝑚

new_i(𝑖𝑜 , 𝑖𝑖) = 𝑖𝑜 ∗𝑚 + 𝑖𝑖

Interchanging Loops. The Loop.swap transformation.

correct when both loops are parallelisable correct when only outer loop is parallelisable

for 𝛾𝑖 𝑖 in 𝑟𝑖 {
for 𝛾 𝑗 𝑗 in 𝑟 𝑗 {
𝑇 ;

}
}

↦−→

𝐺1;

for 𝛾 ′
𝑗
𝑗 in 𝑟 𝑗 {

for 𝛾 ′
𝑖
𝑖 in 𝑟𝑖 {

𝑇 ;

}
}
𝐺2;

corect when:

𝛾𝑖 .shrd.modifies.linear = ∅
with:

ghost swap group

Fissioning Loops. The Loop.fission transformation.

cleanup efracs and local vars

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

for 𝛾 𝑖 in 𝑟𝑖 {
𝑇1;Δ1

Γ

𝑇2;Δ2

}

↦−→

for 𝛾1 𝑖 in 𝑟𝑖 {
𝑇1;

}
for 𝛾2 𝑖 in 𝑟𝑖 {
𝑇2;

}

correct when:
𝑖 not free in 𝛾 .shrd
notRO(Δ1) ∩ Δ2 ∩ 𝛾 .shrd.modifies = ∅
notRO(Δ2) ∩ Δ1 ∩ 𝛾 .shrd.modifies = ∅

with:

𝑅 ≡ cleanup(Γ − 𝛾 .shrd)

𝛾1 ≡


vars ≡ 𝛾 .vars
shrd ≡ 𝛾 .shrd ∩ Δ1

excl.pre ≡ 𝛾 .excl.pre
excl.post ≡ 𝑅

𝛾2 ≡


vars ≡ 𝛾 .vars
shrd ≡ 𝛾 .shrd ∩ Δ2

excl.pre ≡ 𝑅

excl.post ≡ 𝛾 .excl.post

Fusing Loops. The Loop.fusion transformation.

for 𝛾1 𝑖 in 𝑟𝑖 {
𝑇1;

} Δ1

for 𝛾2 𝑖 in 𝑟𝑖 {
𝑇2;

} Δ2

↦−→

for 𝛾 𝑖 in 𝑟𝑖 {
𝑇1;

𝑇2;

}

correct when:
𝑖 fresh in 𝛾1 .shrd and 𝛾2.shrd
notRO(Δ1) ∩ Δ2 ∩ 𝛾1 .shrd = ∅
notRO(Δ2) ∩ Δ1 ∩ 𝛾2 .shrd = ∅

with:

𝑅, 𝑄1, 𝑃2 ≡ 𝛾1.excl.post −! 𝛾2.excl.pre

𝛾 ≡


vars ≡ 𝛾1 .vars ∪ 𝛾2.vars
shrd ≡ 𝛾1 .shrd ★ 𝛾2 .shrd
excl.pre ≡ 𝛾1 .excl.pre ★ 𝑃2

excl.post ≡ 𝛾2.excl.post ★𝑄1

Hoisting an Allocation. The Loop.hoist transformation allows to hoist an allocation outside of a

loop.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:25

for 𝛾 𝑖 in 𝑟𝑖 {
let 𝑥 = MALLOC(𝑑𝑠, 𝜏);
𝑇 ;

MFREE(𝑑𝑠, 𝑥);
}

↦−→

let 𝑥𝑖 = MALLOC(𝑟𝑖 :: 𝑑𝑠, 𝜏);
for 𝛾 ′ 𝑖 in 𝑟𝑖 {

Subst{𝑥 := 𝑡𝑥 }(𝑇);
}
MFREE(𝑟𝑖 :: 𝑑𝑠, 𝑥);

correct when 𝑖 is not free in 𝑑𝑠 .

𝑡𝑥 ≡ 𝑥𝑖 [MINDEX(𝑟𝑖 :: 𝑑𝑠, 𝑖 :: 0𝑑𝑠)]

𝛾 ′ ≡


vars ≡ 𝛾 .vars
shrd ≡ 𝛾 .shrd
excl ≡ 𝛾 .excl ★ Uninit(𝑡𝑥 ⇝ Cell)

Hoisting an Instruction. The Loop.move_out transformation allows to hoist an instruction outside

of a loop.

correct when:

• 𝑖 fresh in 𝑇1 (same code for every iteration)

• 𝑇1 does not self interfere (𝑇1;𝑇1 ↔ 𝑇1), i.e.{
Γ2 [produced(Δ1)] − Γ1 [Uninit(Δ1)] = ∅
full(Δ1) = ∅

• 𝑇2 does not alter the effects of 𝑇1 (𝑇1;𝑇2;𝑇1 ↔ 𝑇1;𝑇2), i.e:

Δ1 ∩ notRO(Δ2) = ∅

• if 𝑟𝑖 was the empty range, doing 𝑇1 once has no observable effect:

𝐺3 : Γ2 [produced(Δ1)] ⇒ Uninit(Γ2 [produced(Δ1)])

The code should typecheck with 𝐺3, however 𝐺3 is erased from the final result.

for 𝛾 𝑖 in 𝑟𝑖 {
Γ1 𝑇1;Δ1

Γ2 𝑇2;Δ2

}

↦−→

𝑇1;

for 𝛾 ′ 𝑖 in 𝑟𝑖 {
𝑇2;

}
G3;

with:

𝛾 ′ ≡



vars ≡ 𝛾 .vars
shrd.modifies ≡

Γ2 − 𝛾 .excl.pre − 𝛾 .shrd.reads
shrd.reads ≡ 𝛾 .shrd.reads
excl ≡ 𝛾 .excl

Also works if 𝑡1 and 𝑡2 are blocks of instructions.

Shifting a loop range. The Loop.shift transformation.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

for 𝛾 𝑖 in 𝑟 {
𝑇 ;

}
↦−→

𝐺1

for 𝛾 ′ 𝑖′ in 𝑟 ′ {
Subst{𝑖 := 𝑓 (𝑖′)}(𝑇);

}
𝐺2

correct when 𝑓 (𝑖′) and 𝑟 ′ are convertible to formulas.

with:

𝐺1 ≡★
𝑖∈𝑟

𝛾 .excl.pre ⇒★
𝑖′∈𝑟 ′

Subst{𝑖 := 𝑓 (𝑖′)}(𝛾 .excl.pre)

𝐺2 ≡★
𝑖′∈𝑟 ′

Subst{𝑖 := 𝑓 (𝑖′)}(𝛾 .excl.post) ⇒★
𝑖∈𝑟

𝛾 .excl.post

𝛾 ′ ≡ Subst{𝑖 := 𝑓 (𝑖′)}(𝛾)

Sliding a loop. The Loop.slide transformation.

similar to Loop.tile + Sequence/Instr.insert/delete/Loop.move_out

correct when:

• loop is parallelizable: 𝛾 .shrd.modifies = ∅
• 𝑇 does not self interfere (𝑇 ;𝑇 ↔ 𝑇)

for 𝛾 𝑖 in 𝑟 {
𝑇 ;

}
↦−→

𝐺1;

for 𝛾𝑜 𝑖𝑜 in 𝑟𝑜 {
for 𝛾𝑖 𝑖𝑖 in 𝑟𝑖 {

Subst{𝑖 := new_i(𝑖𝑜 , 𝑖𝑖)}(𝑇);
}

}
𝐺2;

𝐺1 :★
𝑖∈𝑟

𝛾 .shrd.pre ⇒★
𝑖𝑜 ∈𝑟𝑜
★
𝑖𝑖 ∈𝑟𝑖

𝛾 .shrd.pre

𝐺2 :★
𝑖𝑜 ∈𝑟𝑜
★
𝑖𝑖 ∈𝑟𝑖

𝛾 .shrd.post ⇒★
𝑖∈𝑟

𝛾 .shrd.post

𝛾𝑖 ≡ Subst{𝑖 := new_i(𝑖𝑜 , 𝑖𝑖)}(𝛾)

𝛾𝑜 ≡



vars ≡ 𝛾 .vars
shrd.reads ≡ 𝛾 .shrd.reads
FIXME: asymmetric prefix:

shrd.modifies ≡★𝑖∈𝑟 𝛾 .shrd
excl ≡ ∅

Loop.unroll. Unrolling a loop over a constant range is always safe:

for 𝑖 in 𝑟 {𝑇 ; } ↔ {𝑇 [𝑖 := 𝑟 .start]}; . . . ; {𝑇 [𝑖 := 𝑟 .last]};

Loop.delete Loop.extend_range

6.3 Variable Transformations
The Variable.local_name transformation.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:27

Γ1 𝑇 ; Γ2
↦−→

let 𝑥 ′ = new(⊥);
𝑇1;

G1;

Subst{𝑥 := 𝑥 ′}(𝑇);
G2 ;

𝑇2;

correct when the following typechecks (erased from the

final result):

𝐺1 ≡ 𝑀 (𝑥 ⇝ Cell) ⇒ 𝐻 ★ (𝐻 − −∗𝑀 (𝑥 ⇝ Cell))
𝐺2 ≡ 𝐻 ★ (𝐻 − −∗𝑀 (𝑥 ⇝ Cell)) ⇒ 𝑀 (𝑥 ⇝ Cell)

with:

𝑀 (𝑥 ⇝ Cell) ∈ Γ1{
𝑇1 ≡ set(𝑥 ′, get(𝑥)); if Γ1 ⇒ RO(𝑥 ⇝ Cell)
𝑇1 ≡ ∅ otherwise{
𝑇2 ≡ set(𝑥, get(𝑥 ′)); if Γ2 ⇒ RO(𝑥 ⇝ Cell)
𝑇2 ≡ ∅ otherwise

It is also possible to remove 𝑇1 / 𝑇2 in other cases, but not necessary for correctness, this ensure

typechecking.

7 RELATEDWORK
Themost closely related frameworks were discussed in the introduction. In this section, we comment

on the remaining related work, focusing in turn on each of the ingredients that constitute OptiTrust.

Code transformations. General purpose compilers such as GCC or ICC are able to apply a large

class of program optimizations, from the classic ones such as inlining, dead code elimination, move

of instructions to more advanced ones such as loop fission, loop fusion, or loop reordering. The same

transformations are available in OptiTrust, yet with three major differences. First, general-purpose

compilers apply these transformations on an intermediate representation. In contrast, OptiTrust

applies it at the source level, allowing to produce human-readable feadback. Second, general-

purpose compilers relies on fully-automated procedures, often guided by heuristics, to determine

what transformations to apply. In contrast, OptiTrust transformations are fully controlled by the

programmer, either directly via basic transformations, or indirectly via combined transformations.

Third, general-purpose compilers rely on static analysis applied to plain C code to determine

whether certain transformations are applicable, and as a result may lack information to trigger a

transformation. In constrat, OptiTrust leverages expressive resource typing information to justify

the correctness of transformations, significantly enlarging the set of applicable transformations.

Guidance in general-purpose compilers. To introduce human guidance in general-purpose com-

pilers, a common approach is to insert pragmas into the code. For example, Scout [Krzikalla et al.

2011] is a pragma-based tool for guiding source-to-source transformations that introduce vector

instructions. The main limitation of pragmas is that they are ill-suited for describing sequences of

optimizations. Indeed, there is no easy way to attach a pragma to a line of code that is generated

by a first optimization. Kruse and Finkel [Kruse and Finkel 2018] suggest the possibility to stack up

pragmas, by providing labels as additional pragma arguments: a second pragma may refer to the

labels introduced by the transformation described in a first pragma. This approach does not scale

up well beyond a handful of successive transformations. OptiTrust, in contrast, supports chains of

dozens of transformations.

Domain-specific compilers. Another possible approach to overcome the limitations of general-

purpose compilers is to leverage domain specific languages (DSL), such as Halide [Ragan-Kelley

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

et al. 2013], TVM [Chen et al. 2018], or Boast [Videau et al. 2018]. Specialized compilers can benefit

from carefully tuned heuristics. Yet, even for programs expressed in a specific DSL, the optimization

search space remains vast, hence programmer guidance is key to achieve good performance. In

Halide and TVM, for example, the script that guides the compilation strategy is called a schedule.
For DSLs, the language restriction is also their Achilles’ heel: as soon as the user’s application

requires a single feature that falls outside of what the DSL can express, the programmer loses

most if not all of the benefits of the DSL. In practice, DSLs typically support the possibility to

include foreign functions (or, inlined general-purpose code), however these foreign functions must

be treated as black box by the DSL compiler, preventing the applications of any domain-specific

optimization accross this black box.

In contrast to DSLs, OptiTrust sticks to a standard, general-purpose language. The correctness

criteria for each transformation is expressed with respect to the semantics and our resource typing

for the C language. As we have seen with the example of the reduce function in the OpenCV example,

OptiTrust neverthess can manipulate domain-specific operations, and exploit transformations that

are specific to these operations. At any point in the transformation script, an occurrence of a

domain-specific operation may lowered into standard C code, thereby enabling further lower-level

optimizations.

Code transformations via rewrite rules. A rewrite rule maps a code pattern to another code

pattern. A number of tools exploit rewrite rules to perform source-to-source transformations. For

example, TXL [Cordy 2006] is a multi-language rewrite system, whose patterns are expressed at

the level of syntax, using grammars. Coccinelle [Lawall and Muller 2018] allows the programmer

to describe semantic patches in C code. CodeBoost [Bagge et al. 2003] applies the Stratego program

transformation language [Bravenboer et al. 2008] to C++ code. CodeBoost was used to turn high-

level operations on matrices and vectors into typical high-performance source code.

OptiTrust provides a much more expressive language for describing transformations, going far

beyond rewrite rules. Although many transformations can be encoded as rewrite rules, the encoding
involves can be cumbersome or inefficient. For example, reconstructing a for-loop for a series of

similar blocks of instructions can be encoded via rewrite rules, yet the blocks must be merged

into the for-loop one by one. Other transformations, especially those involving contracts would be

challenging to express as rewrite rules. For example, loop contract minimization (Section ??) would
require the rewrite rule to depend on side-conditions and meta-operations that involve resources

and usage maps.

Source code manipulation frameworks. Frameworks that offer more expressiveness than rewrite

rules generally give access to the abstract syntax tree (AST) of the source code. Traditional compilers

employ an AST, but they are not designed for synthesizing pieces of AST at the source level.

Moreover, traditional compilers operate on intermediate representations, and lose the structure

of the original code. These two limitations of general-purpose compilers have motivated the

development of frameworks that are specifically designed to support code transformations (and

code analyses) at the level of C code. ROSE [Quinlan 2000; Quinlan and Liao 2011] and Cetus [Bae

et al. 2013; Dave et al. 2009] are two such frameworks that provide facilities for manipulating C ASTs.

Source-to-source transformation frameworks have also been employed to produce code targeting

GPUs [Amini 2012; Konstantinidis 2013; Lebras 2019]. These frameworks implement generic

optimization strategies, in a similar fashion as general-purpose compilers. In contrast, OptiTrust

leverages transformation scripts to guide the optimization of a specific program. Moreover, the

OptiTrust infrastructure supports resource typing, which provides much more precise information

than the classic static code analyses implemented in the frameworks such as ROSE and Cetus.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:29

Transformation scripts. Expressing a series of source-level transformations for a specific program

can be done by means of a transformation script. Such scripts have appeared in particular in the

context of polyhedral transformations [Bagnères et al. 2016b; Bondhugula et al. 2008b], for example

in Loopy [Namjoshi and Singhania 2016] and in work by Zinenko et al. [Zinenko et al. 2018a].

CHiLL [Chen et al. 2008; Rudy et al. 2011] includes transformations that go beyond the polyhedral

model. It has been applied to generate finely tuned CUDA code from high-level linear algebra

kernels. POET [Yi and Qasem 2008; Yi et al. 2014] is a scripting language for performing program

transformations, for C/C++ as well as other languages. POET has been employed to generate

optimized code for linear algebra kernels, including semi-automated exploration of a search space

of possible optimizations.

Several pieces of work already discussed in the introduction exploit transformation scripts.

Halide [Ragan-Kelley et al. 2013], TVM [Chen et al. 2018] feature schedules that can be viewed as

transformation scripts. Elevate [Hagedorn et al. 2020] expresses the transformation script in the

form of a composition of functions. ATL [Liu et al. 2022] leverages “tactic”-based proof scripts as

support for expressing transformations scripts. LARA consists of a transformation script featuring

declarative queries as well as arbitrary JavaScript instructions.

All this related work demonstrates a strong interest in leveraging transformation scripts for

putting control of optimizations in the hand of the programmer. Systems differ in what language

they targeted, and what transformations they support. None of the aforementioned systems support

in their transformation scripts a system for targeting program points with the expressiveness and

conciseness offered by OptiTrust targets. Moreover, as far as we know, LARA [Silvano et al. 2019]

and OptiTrust are the only two frameworks making use of transformation scripts for applying

general-purpose transformations at the level of C code. OptiTrust is the first to demonstrate the

use of transformation scripts to produce high-performance code for state-of-the-art benchmarks.

Proof-transforming compilation. The notion of Proof Carrying Code [Necula 1998] refers to the

idea that we should be able to produce compiled code that carries invariants establishing the

same guarantees that are available on the high-level source code. These invariants may capture

safety properties (e.g., no out-of-bound accesses), not necessarily full functional correctness. The

related notion of Proof-Transforming Compilation refers to the process of taking of formally-verified

program, and generating, in addition to the compiled code, a derivation (a.k.a. proof tree) that

formally establishes the correctness of the compiled code.

The work by César Kunz [Barthe et al. 2009; Kunz 2009] shows how to realize proof-transforming

compilation for standard compiler optimizations, applied at the level of the RTL intermediate

language. The work on Alpinist [Sakar et al. 2022] demonstrates the feasibility, for a small number

of GPU-oriented optimizations, of transforming GPU code while preserving logical invariants. Our

work demonstrates the feasability, for a large number of general-purpose code optimizations, of

transforming C code while preserving resource-based invariants. OptiTrust has been designed

for supporting the manipulation of arbitrary Separation Logic invariants, and we look forward to

experiment with this possibility in future work.

Separation Logic. OptiTrust leverages a standard concurrent separation logic. The most closely

related program logics are VST [Cao et al. 2018], a program verification tool for C, and Re-

finedC [Sammler et al. 2021], a very expressive type system for C. Both these systems are gounded

on the Iris framework [Jung et al. 2018a,b], at this day the most advanced formalization of con-

current separation logic. Other tools, such as Alpinist [Sakar et al. 2022] leverage Viper’s dynamic
frames technique [Müller et al. 2017], a cousin of Separation Logic.

Fractional resources [Boyland 2003] are nowdays considered a standard ingredient of Separation

Logic [Jung et al. 2018b]. Following common practice, OptiTrust leverages the notion of fractional

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

resources to describe read-only resources. The technique of making fractions essentially transparent

to the end-user is directly inspired by the work by Heule et al. [2013], implemented in the Chalice

verification tool.

The effectiveness of Separation Logic has been demonstrated accross a broad range of applications,

both for low-level and high-level code [Charguéraud 2020; O’Hearn 2019]. By building OptiTrust on

Separation Logic assertions, we are confident that our framework has the potential to be generally

applicable.

REFERENCES
Vasco Amaral, Beatriz Norberto, Miguel Goulão, Marco Aldinucci, Siegfried Benkner, Andrea Bracciali, Paulo Carreira,

Edgars Celms, Luís Correia, Clemens Grelck, et al. 2020. Programming languages for data-intensive HPC applications: A

systematic mapping study. Parallel Comput. 91 (2020), 102584.
Mehdi Amini. 2012. Source-to-source automatic program transformations for GPU-like hardware accelerators. Ph. D. Disserta-

tion. Ecole Nationale Supérieure des Mines de Paris.

Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Aurangzeb, Hao Lin, Chirag Dave, Rudolf Eigenmann, and Samuel P. Midkiff.

2013. The Cetus Source-to-Source Compiler Infrastructure: Overview and Evaluation. Int. J. Parallel Program. 41, 6
(2013), 753–767. https://doi.org/10.1007/S10766-012-0211-Z

O.S. Bagge, K.T. Kalleberg, M. Haveraaen, and E. Visser. 2003. Design of the CodeBoost transformation system for domain-

specific optimisation of C++ programs. In Proceedings Third IEEE International Workshop on Source Code Analysis and
Manipulation. 65–74. https://doi.org/10.1109/SCAM.2003.1238032

Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016a. Opening Polyhedral Compiler’s Black Box.

In IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016b. Opening Polyhedral Compiler’s Black Box.

In IEEE/ACM International Symp. on Code Generation and Optimization.
Paul Barham and Michael Isard. 2019. Machine learning systems are stuck in a rut. In Proceedings of the Workshop on Hot

Topics in Operating Systems. 177–183.
Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara Rezk. 2009. Certificate Translation for Optimizing Compilers.

ACM Trans. Program. Lang. Syst. 31, 5, Article 18 (jul 2009), 45 pages. https://doi.org/10.1145/1538917.1538919

João Bispo and João MP Cardoso. 2020. Clava: C/C++ source-to-source compilation using LARA. SoftwareX 12 (2020),

100565. https://www.sciencedirect.com/science/article/pii/S2352711019302122/pdf

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of Parallel and

Concurrent Software. In Integrated Formal Methods, Nadia Polikarpova and Steve Schneider (Eds.). Springer International
Publishing, Cham, 102–110.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008a. A practical automatic polyhedral parallelizer

and locality optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Tucson, AZ, USA) (PLDI ’08). Association for Computing Machinery, New York, NY, USA, 101–113.

https://doi.org/10.1145/1375581.1375595

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008b. A practical automatic polyhedral parallelizer

and locality optimizer. In PLDI’08 ACM Conf. on Programming language design and implementation.
John Boyland. 2003. Checking Interference with Fractional Permissions, Vol. 2694. 55–72. https://doi.org/10.1007/3-540-

44898-5_4

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008. Stratego/XT 0.17. A Language and Toolset

for Program Transformation. Sci. Comput. Program. 72, 1–2 (jun 2008), 52–70. https://doi.org/10.1016/j.scico.2007.11.003

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W Appel. 2018. VST-Floyd: A separation logic

tool to verify correctness of C programs. Journal of Automated Reasoning 61, 1-4 (2018), 367–422. https://doi.org/10.

1007/s10817-018-9457-5

Arthur Charguéraud. 2020. Separation logic for sequential programs (functional pearl). Proc. ACM Program. Lang. 4, ICFP,
Article 116 (aug 2020), 34 pages. https://doi.org/10.1145/3408998

Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal. 2021. LoopOpt: Declarative Transformations Made Easy.

In Proceedings of the 24th InternationalWorkshop on Software and Compilers for Embedded Systems (Eindhoven, Netherlands)
(SCOPES ’21). Association for Computing Machinery, New York, NY, USA, 11–16. https://doi.org/10.1145/3493229.3493301

Chun Chen, Jacqueline Chame, and MaryW. Hall. 2008. CHiLL: A Framework for Composing High-Level Loop Transformations.
Technical Report 08-897. University of Southern California.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

https://doi.org/10.1007/S10766-012-0211-Z
https://doi.org/10.1109/SCAM.2003.1238032
https://doi.org/10.1145/1538917.1538919
https://www.sciencedirect.com/science/article/pii/S2352711019302122/pdf
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/3408998
https://doi.org/10.1145/3493229.3493301

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:31

Compiler for Deep Learning. In OSDI. USENIX Association. https://www.usenix.org/system/files/osdi18-chen.pdf

Basile Clément and Albert Cohen. 2022. End-to-end translation validation for the halide language. Proc. ACM Program.
Lang. 6, OOPSLA1, Article 84 (apr 2022), 30 pages. https://doi.org/10.1145/3527328

James R Cordy. 2006. The TXL source transformation language. Science of Computer Programming 61, 3 (2006), 190–210.

Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, and Samuel Midkiff. 2009. Cetus: A Source-to-

Source Compiler Infrastructure for Multicores. Computer 42, 12 (2009), 36–42. https://doi.org/10.1109/MC.2009.385

Thomas M Evans, Andrew Siegel, Erik W Draeger, Jack Deslippe, Marianne M Francois, Timothy C Germann, William E

Hart, and Daniel F Martin. 2022. A survey of software implementations used by application codes in the Exascale

Computing Project. The International Journal of High Performance Computing Applications 36, 1 (2022), 5–12.
Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem: one dimensional time. Intl. Journal of Parallel

Programming 21, 5 (october 1992), 313–348.

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—Where Programs Meet Provers. In European Symposium on
Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7792). Springer, 125–128. http://hal.inria.fr/hal-00789533

Jean-Christophe Filliâtre. 2003. Why: a multi-language multi-prover verification tool. Research Report 1366. LRI, Université

Paris Sud. http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Extended

Static Checking for Java. In Programming Language Design and Implementation (PLDI). 234–245. http://www.soe.ucsc.

edu/~cormac/papers/pldi02.ps

John John Gough and K John Gough. 2001. Compiling for the. Net Common Language Runtime. Prentice Hall PTR.
Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving

high-performance the functional way: a functional pearl on expressing high-performance optimizations as rewrite

strategies. Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–29.

Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Summers. 2013. Abstract Read Permissions: Fractional

Permissions without the Fractions. In Verification, Model Checking, and Abstract Interpretation, Roberto Giacobazzi, Josh

Berdine, and Isabella Mastroeni (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 315–334.

Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley. 2022. Exocompilation

for productive programming of hardware accelerators. In Proceedings of the 43rd ACM SIGPLAN International Conf. on
Programming Language Design and Implementation. 703–718.

Yuka Ikarashi, Jonathan Ragan-Kelley, Tsukasa Fukusato, Jun Kato, and Takeo Igarashi. 2021. Guided Optimization for

Image Processing Pipelines. In 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
1–5.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018a. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28

(2018), e20. https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. JFP 28 (2018). https://doi.org/10.1017/

S0956796818000151

Vasilios Kelefouras and Georgios Keramidas. 2022. Design and Implementation of 2D Convolution on x86/x64 Processors.

IEEE Transactions on Parallel and Distributed Systems 33, 12 (2022), 3800–3815.
Athanasios Konstantinidis. 2013. Source-to-source compilation of loop programs for manycore processors. Ph. D. Dissertation.

Imperial College London.

Michael Kruse and Hal Finkel. 2018. A Proposal for Loop-Transformation Pragmas. CoRR abs/1805.03374 (2018).

arXiv:1805.03374 http://arxiv.org/abs/1805.03374

Olaf Krzikalla, Kim Feldhoff, Ralph Müller-Pfefferkorn, and Wolfgang E. Nagel. 2011. Scout: A Source-to-Source Transfor-

mator for SIMD-Optimizations. In Euro-Par Workshops (2) (LNCS, Vol. 7156). Springer.
César Kunz. 2009. Proof preservation and program compilation. Ph. D. Dissertation. École Nationale Supérieure des Mines de

Paris. https://pastel.archives-ouvertes.fr/pastel-00004940/file/thesis-ckunz.pdf

Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. In USENIX Conference
on Usenix Annual Technical Conference (USENIX ATC ’18). USENIX Association, 13 pages.

Youenn Lebras. 2019. Code optimization based on source to source transformations using profile guided metrics. Ph. D.

Dissertation. Université Paris-Saclay (ComUE). https://www.theses.fr/2019SACLV037.pdf

Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2022. Verified Tensor-Program Optimiza-

tion via High-Level Scheduling Rewrites. 6, POPL, Article 55 (jan 2022), 28 pages. https://doi.org/10.1145/3498717

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2017. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In Dependable Software Systems Engineering. IOS Press, 104–125. https://doi.org/10.3233/978-1-61499-810-5-

104

https://www.usenix.org/system/files/osdi18-chen.pdf
https://doi.org/10.1145/3527328
https://doi.org/10.1109/MC.2009.385
http://hal.inria.fr/hal-00789533
http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz
http://www.soe.ucsc.edu/~cormac/papers/pldi02.ps
http://www.soe.ucsc.edu/~cormac/papers/pldi02.ps
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://arxiv.org/abs/1805.03374
http://arxiv.org/abs/1805.03374
https://pastel.archives-ouvertes.fr/pastel-00004940/file/thesis-ckunz.pdf
https://www.theses.fr/2019SACLV037.pdf
https://doi.org/10.1145/3498717
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.3233/978-1-61499-810-5-104

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Kedar S. Namjoshi and Nimit Singhania. 2016. Loopy: Programmable and Formally Verified Loop Transformations. In Static
Analysis - 23rd International Symposium, SAS (LNCS, Vol. 9837). Springer.

George Ciprian Necula. 1998. Compiling with proofs. Ph. D. Dissertation. Carnegie Mellon University.

Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95. https://doi.org/10.1145/3211968 The appendix

is linked as supplementary material from the ACM digital library..

Pedro Pinto, Joao Bispo, Joao Cardoso, Jorge Gomes Barbosa, Davide Gadioli, Gianluca Palermo, Jan Martinovic, Martin

Golasowski, Katerina Slaninova, Radim Cmar, et al. 2020. Pegasus: Performance Engineering for Software Applications

Targeting HPC Systems. IEEE Transactions on Software Engineering (2020). https://repositorio-aberto.up.pt/bitstream/

10216/127756/2/405707.pdf

Dan Quinlan. 2000. ROSE: Compiler support for object-oriented frameworks. Parallel processing letters 10, 02n03 (2000),
215–226. https://digital.library.unt.edu/ark:/67531/metadc741175/m2/1/high_res_d/793936.pdf

Dan Quinlan and Chunhua Liao. 2011. The ROSE source-to-source compiler infrastructure. In Cetus users and compiler
infrastructure workshop, in conjunction with PACT, Vol. 2011. 1.

Jonathan Ragan-Kelley. 2023. Technical Perspective: Reconsidering the Design of User-Schedulable Languages. Commun.
ACM 66, 3 (feb 2023), 88. https://doi.org/10.1145/3580370

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.

Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines.

In Conference on Programming Language Design and Implementation. 12 pages. https://doi.org/10.1145/2491956.2462176

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Logic in Computer Science (LICS).
55–74. http://www.cs.cmu.edu/~jcr/seplogic.pdf

Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacqueline Chame. 2011. A Programming Language Interface

to Describe Transformations and Code Generation. In Languages and Compilers for Parallel Computing. Springer Berlin
Heidelberg.

Ömer Sakar, Mohsen Safari, Marieke Huisman, and Anton Wijs. 2022. Alpinist: An Annotation-Aware GPU Program

Optimizer. In Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 13244), Dana Fisman and Grigore Rosu (Eds.).

Springer, 332–352. https://doi.org/10.1007/978-3-030-99527-0_18

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:

automating the foundational verification of C code with refined ownership types. In PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–174. https://doi.org/10.1145/3453483.3454036

Cristina Silvano, Giovanni Agosta, Andrea Bartolini, Andrea R. Beccari, Luca Benini, Loïc Besnard, João Bispo, Radim

Cmar, João M.P. Cardoso, Carlo Cavazzoni, Daniele Cesarini, Stefano Cherubin, Federico Ficarelli, Davide Gadioli,

Martin Golasowski, Antonio Libri, Jan Martinovič, Gianluca Palermo, Pedro Pinto, Erven Rohou, Kateřina Slaninová, and

Emanuele Vitali. 2019. The ANTAREX domain specific language for high performance computing. Microprocessors and
Microsystems 68 (2019), 58–73. https://doi.org/10.1016/j.micpro.2019.05.005

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I August. 2003. Compiler optimization-space

exploration. In International Symposium on Code Generation and Optimization, 2003. CGO 2003. IEEE, 204–215.
Lars B. van den Haak, Anton Wijs, Marieke Huisman, and Mark van den Brand. 2024. HaliVer: Deductive Verification and

Scheduling Languages Join Forces. arXiv:2401.10778 [cs.LO]

Brice Videau, Kevin Pouget, Luigi Genovese, Thierry Deutsch, Dimitri Komatitsch, Frédéric Desprez, and Jean-François

Méhaut. 2018. BOAST: A metaprogramming framework to produce portable and efficient computing kernels for

HPC applications. International Journal of High Performance Computing Applications 32, 1 (Jan. 2018), 28–44. https:

//doi.org/10.1177/1094342017718068

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Conference
on Programming Language Design and Implementation (San Jose, California, USA). Association for Computing Machinery,

12 pages. https://doi.org/10.1145/1993498.1993532

Qing Yi and Apan Qasem. 2008. Exploring the Optimization Space of Dense Linear Algebra Kernels. In LCPC.
Qing Yi, Qian Wang, and Huimin Cui. 2014. Specializing Compiler Optimizations through Programmable Composition for

Dense Matrix Computations. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture
(Cambridge, United Kingdom) (MICRO-47). IEEE Computer Society, USA, 596–608. https://doi.org/10.1109/MICRO.2014.

14

Oleksandr Zinenko, Lorenzo Chelini, and Tobias Grosser. 2018a. Declarative Transformations in the Polyhedral Model.
Research Report RR-9243. https://hal.inria.fr/hal-01965599

Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2018b. Visual Program Manipulation in the Polyhedral Model.

ACM Trans. Archit. Code Optim. 15, 1, Article 16 (mar 2018), 25 pages. https://doi.org/10.1145/3177961

https://doi.org/10.1145/3211968
https://repositorio-aberto.up.pt/bitstream/10216/127756/2/405707.pdf
https://repositorio-aberto.up.pt/bitstream/10216/127756/2/405707.pdf
https://digital.library.unt.edu/ark:/67531/metadc741175/m2/1/high_res_d/793936.pdf
https://doi.org/10.1145/3580370
https://doi.org/10.1145/2491956.2462176
http://www.cs.cmu.edu/~jcr/seplogic.pdf
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1016/j.micpro.2019.05.005
https://arxiv.org/abs/2401.10778
https://doi.org/10.1177/1094342017718068
https://doi.org/10.1177/1094342017718068
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/MICRO.2014.14
https://doi.org/10.1109/MICRO.2014.14
https://hal.inria.fr/hal-01965599
https://doi.org/10.1145/3177961

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Overview
	1.4 Contributions
	1.5 Contents of the Paper

	2 Case Studies
	3 The OptiTrust Framework
	3.1 Principle of a Reversible Translation from C into an Imperative Lambda-Calculus
	3.2 Unsupported C Features and their Handling by OptiTrust
	3.3 OptiTrust's Internal AST
	3.4 AST Manipulation and Unique Identifiers
	3.5 Encoding and Decoding of C Code

	4 Targets in OptiTrust
	5 Computing Program Resources
	5.1 Overview of the typing strategy
	5.2 Top-down typechecking and bottom-up summaries
	5.3 Resource sets
	5.4 Contracts
	5.5 Typechecking of terms

	6 Justifying Transformation Correctness
	6.1 Instruction Transformations
	6.2 Loop Transformations
	6.3 Variable Transformations

	7 Related Work
	References

