
A Case For Interactive Optimization Assistants

Thomas Kœhler � thok.eu

User-Schedulable Languages Workshop @ ASPLOS — March 2025, Rotterdam

https://thok.eu

How do we Optimize Programs?
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

A Case For Interactive Optimization Assistants 1

Automatic Compilation Passes
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized codecompiler(s)

divide and conquer:
1. code fragments
2. compilation passes

+ automatic
+ local optimizations
- global optimizations
- fragile heuristics

A Case For Interactive Optimization Assistants 2

Manual Program Rewriting
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

holistic exploration :
1. manual rewrites
2. empirical choices

+ global optimizations
+ human expertise
- time consuming
- error prone

programmer

A Case For Interactive Optimization Assistants 3

Manual Program Rewriting
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

Matrix Multiplication, initial

C code

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
float sum = 0.0f;
for (int k = 0; k < p; k++) {
sum += A[i][k] * B[k][j];

}
C[i][j] = sum;

}
}

7× bigger,

150× faster

float* pB = (float*) malloc(sizeof(float[32][256][4][32]));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {
for (int bk = 0; bk < 256; bk++) {
for (int k = 0; k < 4; k++) {
for (int j = 0; j < 32; j++) {
pB[32768 * bj + 128 * bk + 32 * k + j] = B[1024 * (4 * bk + k) + 32 * bj + j];

} } } }
#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {
for (int bj = 0; bj < 32; bj++) {
float* sum = (float*) malloc(sizeof(float[32][32]));
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum[32 * i + j] = 0.;

} }
for (int bk = 0; bk < 256; bk++) {
for (int i = 0; i < 32; i++) {
float s[32];
memcpy(s, &sum[32 * i], sizeof(float[32]));

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 0] * pB[32768 * bj + 128 * bk + 32 * 0 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 1] * pB[32768 * bj + 128 * bk + 32 * 1 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 2] * pB[32768 * bj + 128 * bk + 32 * 2 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 3] * pB[32768 * bj + 128 * bk + 32 * 3 + j];

memcpy(&sum[32 * i], s, sizeof(float[32]));
} }
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
C[1024 * (32*bi + i) + 32*bj + j] = sum[32*i + j];

}
}
free(sum);

}
free(pB);

A Case For Interactive Optimization Assistants 4

We Need User-Scheduling

▸ compilers answer neither current nor future optimization needs

▸ algorithms and hardware architectures evolve faster than compilers

▸ falling back to manual optimization slows down progress

A Case For Interactive Optimization Assistants 5

We Need Interactive Program Rewriting
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

holistic exploration:
1. automated rewrites
2. guided searches

+ global optimizations
+ human expertise
+ (semi-)automatic
+ correct by construction

optimization assistant

A Case For Interactive Optimization Assistants 6

My journey towards interactive optimization assistants:

A Case For Interactive Optimization Assistants 7

PhD: Functional Program Rewriting

the "right" choice

(map f) . (map g) = map (f . g)

rewrite rules

combinatorial rewriting space, correct and extensible

A Case For Interactive Optimization Assistants 8

Achieving Expert Optimizations by Composition

ELEVATE rewriting strategies:
[ICFP'20 , CACM'23]

Harris:
corner
and edge
detection

1.4x faster than Halide! [CGO'21]

(4-core ARM Cortex A7)

16x faster than OpenCV,

6 expert optimizations
⟶ decomposed into 74 rules

enormous rewrite space,
10x bigger programs than before,
thousands of rewrite steps

A Case For Interactive Optimization Assistants 9

Takeaway

Extensibility, composability and control matter.

▸ 6 expert optimizations = 51 generic + 19 backend + 4 specific rules

▸ can add rules without heavy compiler re-engineering

▸ can define custom optimization strategies through higher-order composition

A Case For Interactive Optimization Assistants 10

Takeaway

Premature control is the root of all evil.

▸ strategies took a lot of effort to write

▸ Harris: 63 strategies, 600 lines of code

▸ Matmul: 36 strategies, 200 lines of code

▸ user responsible for chaining and debugging thousands of rewrite steps

▸ strategies were often over-detailed and program-specific

▸ difficulties scaling to a more diverse and complex benchmark suite

A Case For Interactive Optimization Assistants 11

Combining Automatic Search and Human Expertise
Guided Equality Saturation [POPL'24]

=
automatic rewrite search,

sharing equivalent subterms
 +

specifying guides as program sketches

guided search :
582x faster, 116x less memory

A Case For Interactive Optimization Assistants 12

Sketches Required for TVM-like Matrix Multiplication
1. split "loops"

containsMap(m/32,
containsMap(32,
containsMap(n/32,
containsMap(32,
containsReduceSeq(k/4,
containsReduceSeq(4,
containsAddMul))))))

2. reorder "loops"

containsMap(m/32,
containsMap(n/32,
containsReduceSeq(k/4,
containsMap(32,
containsReduceSeq(4,
containsMap(32,
containsAddMul))))))

3. introduce memory

containsMap(m / 32,
containsMap(n / 32,
containsReduceSeq(k / 4,
containsMap(32,
containsReduceSeq(4,
containsMap(32,
containsAddMul))))),

containsToMem(n.k.f32,
containsMap(n / 32,
containsMap(k,
containsMap(32.f32, ?)))))

4. thread, vectorize, unroll

containsMapPar(m / 32,
containsMap(n / 32,
containsReduceSeq(k / 4,
containsMap(32,
containsReduceSeqUnroll(4,
containsMap(1,
containsAddMulVec))))),

containsToMem(n.k.f32,
containsMapPar(n / 32,
containsMap(k,
containsMap(1.<32>f32, ?)))))

A Case For Interactive Optimization Assistants 13

Takeaway

Semi-automation enables parsimonious control.

▸ simple sketches instead of complex strategies

▸ sketches 10× smaller than complete program, focus on key optimization insights

▸ sufficient for guided search to infer the rewrites and missing program details

A Case For Interactive Optimization Assistants 14

Takeaway

Parsimonious control is not enough for productivity.

▸ users are not supported in iteratively developing their sketch sequences

▸ little feedback to help decision-making

▸ need to learn an unfamiliar language to write sketches

▸ also relevant to developing rewriting strategies

A Case For Interactive Optimization Assistants 15

PostDoc: Assisting Interactive Optimization
OptiTrust Optimization Assistant

What to compute: C code

void mm(float* C, float* A, float* B,
int m, int n, int p) {

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
float sum = 0.0f;
for (int k = 0; k < p; k++)
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}

}
}

How to optimize: OCaml script

Function.inline_def [cFunDef "mm"];
let tile (id, tile_size) = Loop.tile (int tile_size)

˜index:("b" ^ id) ˜bound:TileDivides [cFor id] in
List.iter tile [("i", 32); ("j", 32); ("k", 4)];
Loop.reorder_at

˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"] [cPlusEq ()];
Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB"
˜indep:["bi"; "i"] [cArrayRead "B"];

Matrix.stack_copy ˜var:"sum" ˜copy_var:"s"

˜copy_dims:1 [cFor ˜body:[cPlusEq ()] "k"];
Omp.simd [cFor ˜body:[cPlusEq ()] "j"];
Omp.parallel_for [cFunBody "mm1024"; cStrict; cFor ""];
Loop.unroll [cFor ˜body:[cPlusEq ()] "k"];

A Case For Interactive Optimization Assistants 16

PostDoc: Assisting Interactive Optimization
OptiTrust Optimization Assistant

What to compute: C code

void mm(float* C, float* A, float* B,
int m, int n, int p) {

__reads("A ↝ Matrix2(m, p)");
__reads("B ↝ Matrix2(p, n)");
__modifies("C ↝ Matrix2(m, n)");
for (int i = 0; i < m; i++) {
__xmodifies("for j in 0..n→ &C[i][j]↝ Cell")

;
for (int j = 0; j < n; j++) {
__xmodifies("&C[i][j] ↝ Cell");
float sum = 0.0f;
for (int k = 0; k < p; k++)
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}

}
}

How to optimize: OCaml script

Function.inline_def [cFunDef "mm"];
let tile (id, tile_size) = Loop.tile (int tile_size)

˜index:("b" ^ id) ˜bound:TileDivides [cFor id] in
List.iter tile [("i", 32); ("j", 32); ("k", 4)];
Loop.reorder_at

˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"] [cPlusEq ()];
Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB"
˜indep:["bi"; "i"] [cArrayRead "B"];

Matrix.stack_copy ˜var:"sum" ˜copy_var:"s"

˜copy_dims:1 [cFor ˜body:[cPlusEq ()] "k"];
Omp.simd [cFor ˜body:[cPlusEq ()] "j"];
Omp.parallel_for [cFunBody "mm1024"; cStrict; cFor ""];
Loop.unroll [cFor ˜body:[cPlusEq ()] "k"];

▸ validated through static resource

analysis based on separation logic

A Case For Interactive Optimization Assistants 17

Visualizing the Effect of Transformations

Pressing “F6” on a transformation step opens the corresponding diff:

A Case For Interactive Optimization Assistants 18

Takeaway

Accessibility, interactivity and feedback matter.

▸ familiar C code rather than specialized language / IR

▸ interactive visualization of intermediate steps (diffs, traces)

▸ reversible encoding from C to internal imperative 𝜆-calculus

▸ no black box code generation: “what you see is what you get”

▸ reasonably concise scripts thanks to composability

▸ Matmul: 8 script steps result in 55 basic transformations (+61 “ghost transformations”).

▸ names are very useful: eases composition as well as targeting and marking subterms.

▸ easier to define abstract loop transformations on C

A Case For Interactive Optimization Assistants 20

Takeaway

Much remains to be done.

▸ only subset of C supported

▸ interactivity and feedback remains basic

▸ no search automation

▸ ...

A Case For Interactive Optimization Assistants 21

A Case for Interactive Optimization Assistants

1. Extensibility, composability and control matter.
▸ yet, Premature control is the root of all evil.

2. Semi-automation enables parsimonious control.
▸ yet, Parsimonious control is not enough for productivity.

3. Accessibility, interactivity and feedback matter.
▸ yet, Much remains to be done.

A Case For Interactive Optimization Assistants 22

Optimization Assistants: Towards Mainstream User-Scheduling

Mainstream Development Tools:

▸ Debuggers

▸ Profilers

▸ AI Assistants (GitHub Copilot)

▸ Optimization Assistants? (aka. User-Scheduling++)

▸ Proof Assistants?

Improve the traditional (profile; manual rewrite; debug) cycle.

A Case For Interactive Optimization Assistants 23

A Few Technical Challenges

physics
simulation

Challenge 2: adapt to algorithm and DSL evolution Challenge 1: adapt to hardware evolution

image
processing

machine
learning

CPU

GPU

CGRA,
FPGA

Challenge 3: develop a productive interactive feedback loop

feedback
loop

Optimization Assistant

programmer

HCI
guided searches

performance visualization

optimization suggestions

programming models

hardware description

specialized constructs
extensibility

custom optimizations

gradual control

A Case For Interactive Optimization Assistants 24

A Few Community Challenges

The user-scheduling community could benefit from sharing:

1. benchmarks

2. evaluation methodologies

3. software

4. terminology definitions?

Thanks! I am curious to see where this workshop leads us. � thok.eu

A Case For Interactive Optimization Assistants 25

https://thok.eu

A Few Community Challenges

The user-scheduling community could benefit from sharing:

1. benchmarks

2. evaluation methodologies

3. software

4. terminology definitions?

Thanks! I am curious to see where this workshop leads us. � thok.eu

A Case For Interactive Optimization Assistants 26

https://thok.eu

Backup Slides

A Case For Interactive Optimization Assistants 27

1st Benchmark: Matrix Multiplication on Intel CPU

▸ 6 optimizations

▸ transform loops blocking, permutation, unrolling
▸ change data layout array packing
▸ add parallelism vectorization, multi-threading

▸ performance is on par with reference schedules from TVM.

https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html

A Case For Interactive Optimization Assistants 28

https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html

2nd Benchmark: Corner Detection on ARM CPUs

▸ standard corner detection pipeline

▸ 6 well-known optimizations

circular buffering, operator fusion, multi-threading,

vectorization, convolution separation, register rotation

1.00
1.32

0.32

re
la

ti
v
e
 r

u
n
ti

m
e

p
e
rf

o
rm

a
n
ce

Halide

Lift

Rise

this work

▸ extensibility + control

Ô⇒

faster code than Halide, with 2

additional optimizations

A Case For Interactive Optimization Assistants 29

OptiTrust Matrix Multiplication Performance

▸ Intel(R) Core(TM) i7-8665U CPU, AVX2 (8 floats), 4 cores (8 hyperthreads)

▸ Relative speedup on 1024
3
input:

version single-thread multi-thread
unoptimized 1× 1×

optimized 46× 150×

TVM 46× 150×

numpy (Intel MKL)
1

71× 183×

Both codes have 90th percentile runtime of 9.4ms over 200 benchmark runs,

corresponding to a speedup of 150× compared to the 90th percentile of the naive code.

1
uses assembly code, explicit vectorization, custom thread library

A Case For Interactive Optimization Assistants 30

