
Towards Interactive Program Optimization with
Guaranteed Numerical Accuracy

Thomas Kœhler � thok.eu

October 2025, IRMIA++ Seminar, Strasbourg

https://thok.eu

My Career
2018

2020

2022

2024

PhD

PostDoc

R&D Internship

CRCN Researcher

with Michel Steuwer and Phil Trinder

with Arthur Charguéraud

Edinburgh

Inria CAMUS,
Strasbourg

Oct

Glasgow

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 1

Optimizing Programs
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

+ time
+ energy
+ memory

Why?
- massive data and compute
- tight constraints
- better results

Which Applications?
- image processing
- physics simulation
- machine learning

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 2

Automatic Program Optimization (GCC/Clang)
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized codecompiler(s)

divide and conquer:
1. code fragments
2. compilation passes

+ automatic
+ local optimizations
- global optimizations
- fragile heuristics

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 3

Automatic Program Optimization (GCC/Clang)
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized codecompiler(s)

divide and conquer:
1. code fragments
2. compilation passes

+ automatic
+ local optimizations
- global optimizations
- fragile heuristics

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 4

Manual Program Optimization (BLAS/MKL)
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

holistic exploration :
1. manual rewrites
2. empirical choices

+ global optimizations
+ human expertise
- time consuming
- error prone

expert

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 5

Manual Program Optimization (BLAS/MKL)
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

Matrix Multiplication, initial

C code

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
float sum = 0.0f;
for (int k = 0; k < p; k++) {
sum += A[i][k] * B[k][j];

}
C[i][j] = sum;

}
}

150× faster,

7× bigger

float* pB = (float*) malloc(sizeof(float[32][256][4][32]));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {
for (int bk = 0; bk < 256; bk++) {
for (int k = 0; k < 4; k++) {
for (int j = 0; j < 32; j++) {
pB[32768 * bj + 128 * bk + 32 * k + j] = B[1024 * (4 * bk + k) + 32 * bj + j];

} } } }
#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {
for (int bj = 0; bj < 32; bj++) {
float* sum = (float*) malloc(sizeof(float[32][32]));
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum[32 * i + j] = 0.;

} }
for (int bk = 0; bk < 256; bk++) {
for (int i = 0; i < 32; i++) {
float s[32];
memcpy(s, &sum[32 * i], sizeof(float[32]));

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 0] * pB[32768 * bj + 128 * bk + 32 * 0 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 1] * pB[32768 * bj + 128 * bk + 32 * 1 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 2] * pB[32768 * bj + 128 * bk + 32 * 2 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 3] * pB[32768 * bj + 128 * bk + 32 * 3 + j];

memcpy(&sum[32 * i], s, sizeof(float[32]));
} }
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
C[1024 * (32*bi + i) + 32*bj + j] = sum[32*i + j];

}
}
free(sum);

}
free(pB);

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 6

What Future for Program Optimization?

▸ compilers answer neither current nor future optimization needs

▸ algorithms and hardware architectures evolve faster than compilers

▸ falling back to manual optimization slows down progress

PLDI 2024 Keynote: The Future of Fast Code: Giving Hardware What It Wants

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 7

https://www.youtube.com/watch?v=66oKqvwoIv0&t=1182s

Towards Interactive Optimization
initial code

lib
ra

ry
 2

lib
ra

ry
 1

ap
pl

ic
at

io
n

optimized code

holistic exploration:
1. automated rewrites
2. guided searches

+ global optimizations
+ human expertise
+ (semi-)automatic
+ correct by construction

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 8

User-Guided Program Optimization (Halide)

▸ Industry adoption with, e.g. code optimized in Adobe Photoshop

▸ Academic community with first "User-Schedulable Languages" workshop in 2025

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 9

PhD: Rewriting Functional Programs (Rise)

the "right" choice

(map f) . (map g) = map (f . g)

rewrite rules

combinatorial rewriting space, correct and extensible

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 10

PostDoc: Transforming Imperative Programs (OptiTrust)
void mm(float* c, float* a, float* b, int m, int n, int p) {
__requires("A: int * int → float, B: int * int → float");
__reads("a ↝ Matrix2(m, p, A), b ↝ Matrix2(p, n, B)");
__writes("c ↝ Matrix2(m, n, matmul(A, B, p))");

for (int i = 0; i < m; i++) { // [...]
for (int j = 0; j < n; j++) {
__xwrites("&c[i][j] // matmul(A, B, p)(i, j)");

float s = 0.f; // [...]
for (int k = 0; k < p; k++) {
__spreserves("&s // sum(k, fun k0 → A(i, k0) *. B(k0, j))");
s += a[i][k] * b[k][j];
// [...]

}

c[i][j] = s;
} } }

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 11

PostDoc: Transforming Imperative Programs (OptiTrust)

Function.inline_def [cFunDef "mm"];
let tile (id, tile_size) = Loop.tile (int tile_size)
˜index:("b" ^ id) ˜bound:TileDivides [cFor id] in

List.iter tile [("i", 32); ("j", 32); ("k", 4)];
Loop.reorder_at
˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"] [cPlusEq ()];

Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB"
˜indep:["bi"; "i"] [cArrayRead "B"];

Matrix.stack_copy ˜var:"sum" ˜copy_var:"s"
˜copy_dims:1 [cFor ˜body:[cPlusEq ()] "k"];

Omp.simd [cFor ˜body:[cPlusEq ()] "j"];
Omp.parallel_for [cFunBody "mm1024"; cStrict; cFor ""];
Loop.unroll [cFor ˜body:[cPlusEq ()] "k"];

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 12

Vision: Interactive Optimization Across the Stack

physics
simulation

image
processing

machine
learning

CPU

GPU

CGRA,
FPGA

Optimization Assistant

Goal:
build the first

that adapts to domain and hardware evolution,
and avoids falling back to manual optimization

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 13

Vision: Interactive Optimization Across the Stack

image
processing

CPU

6 expert optimizations
⟶ decomposed into 74 rules

Harris:
corner
and edge
detection

1.4x faster than Halide!
[CGO'21 A]

16x faster than OpenCV,

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 14

Vision: Interactive Optimization Across the Stack

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 15

Vision: Interactive Optimization Across the Stack

Axis 3 : interactivity

physics
simulation

Axis 2 : domain-specific
transformations

Axis 4 : numerical analysis

Axis 1 : hardware-specific
transformations

feedback
loop

finite numbers
float

exact arithmetic
ℝ

OpenCL
CUDA

ILADSL

DSL
image

processing

machine
learning

CPU

GPU

CGRA,
FPGA

Optimization Assistant

programmer

C,C++

C,C++

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 16

Axis 2: Libraries of Composable Domain-Specific Transformations

physics
simulation

Axis 2 : domain-specific
transformations

DSL

DSLimage
processing

machine
learning

Optimization Assistant

C, C++

Goal: create an optimization space
 that evolves with domains and
 their specialized languages (DSLs)

Difficulties:
- breaking abstraction and stack boundaries
- facilitate defining custom transformations

Plan:
- AI project: novel ML stack
- long term: mixing DSLs,
 libraries = functions
 + transformations
 + heuristics

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 17

Axis 2: Libraries of Composable Domain-Specific Transformations
// library of (unoptimized) functions

decl dot (k: nat) (A B: k.real): real

// library of transformations

rule dot_comm (k: nat) (A B: k.real):
dot A B = dot B A

rule dot_to_imperative (k: nat) (A B: k.real):
imp (dot A B) = { reads a ~> A, b ~> B, writes c ~> dot A B
var s = 0
for i in range(k) {

s += a[i] * b[i]
}
c = s

}

// ... use optimization assistant to derive optimized code ...

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 18

Axis 3: Interactivity between Programmer and Assistant

Axis 3 : interactivity

feedback
loop

Optimization Assistant

programmer

Goal: develop an interactive feedback loop allowing
 to productively explore the optimization space

Difficulty:
- exploring a complex and evolving optimization space

Plan:
- now: sketch-guided optimization of imperative code

hybrid polyhedric algorithm
- later: optimization suggestions and vizualisations

bottlenecks, hot code

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 19

Sketch-Guided Program Optimization

what do I want? ?

? = sketch
= incomplete program
= set of programs

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 20

Sketch-Guided Equality Saturation
Guided Equality Saturation [POPL'24 A*]

=
automatic rewrite search,

sharing equivalent subterms
 +

specifying guides as program sketches

guided search :
582x faster, 116x less memory

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 21

Sketch-Guided Polyhedral Compilation

▸ internship and PhD of Valéran Maytié

▸ supervised together with Cédric Bastoul and Christophe Alias

Sketch?

Specification

A[i], B[i] : { 1 �� i �� N }

out E[i] : { 0 �� i < N } �� C[i] + D[i+1]
D[i] : { 1 �� i �� N } �� A[i] + B[i]
C[i] : { 0 �� i < N }

for i {
 D[i];
 E[i];
}

evar [ce, cd] { ce = cd - 1 }
for i in { 1 �� i�cd �� N } {
 D[i�cd] = A[i�cd] + B[i�cd];
 E[i�ce] = C[i�ce] + D[i�ce+1];
}

Output

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 22

Half Time

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 23

Axis 4: Guaranteeing Numerical Accuracy during Optimization

Axis 4 : numerical analysis

finite numbers
float

exact arithmetic
ℝ

Goal: guarantee numerical accuracy during optimization,
 avoid errors and allow optimizations

 error-tolerant trigonometric function = 4x faster
fixed point numbers for FPGA

Difficulty:
- most compilers do not perform numerical analyses

'gcc': no optimisations over floats
 'gcc -ffast-math': treats floats as reals

International Collaboration:
- Eva Darulova, Uppsala University [TOPLAS'17, SAS'23]

Plan:
- now: functional language on arrays
- later: imperative language

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 24

Floating Point Analysis and Optimization Tools

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 25

Floating Point Analysis and Optimization Tools

▸ tools to tune the precision of variables and operations (mixed-precision tuning)
▸ tools that rewrite arithmetic expressions

▸ no tool that applies advanced compiler optimizations over loops and arrays

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 26

Floating Point Analysis and Optimization Tools

[SAS’23]

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 27

Ingredient 1: Data Flow Analysis

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 28

Ingredient 2: Abstraction of Floating Point Operations

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 29

Novel Ingredient: Grouped Analysis of Array Elements

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 30

Benchmarks

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 31

Scalability Results

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 32

Combining Analysis and Optimization

2 Master Theses supervised with Eva Darulova:

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 33

Simon’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 34

Simon’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 35

Simon’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 36

Simon’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 37

Simon’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 38

Simon’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 39

Simon’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 40

Filip’s Work

▸ curated a set of benchmark Rise programs

▸ each with an unoptimized reference and optimized variants

▸ generated executable code for both standard and high-precision evaluation (MPFR)

shadow execution technique
▸ visualized the trade-offs between accuracy and performance

▸ tested different input distributions varying subnormal values and large dynamic

ranges

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 41

Filip’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 42

Filip’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 43

Filip’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 44

Filip’s Work

ULP = Unit in the Last Place ≃ spacing between adjacent representable numbers

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 45

Filip’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 46

Filip’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 47

Filip’s Work

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 48

Future Work

▸ Porting Daisy analysis directly over Rise programs

▸ Arbitrary dimensions, mixed precision, and mixing rewrites preserving either real

semantics or float semantics

▸ More advanced design-space exploration and visualizing pareto fronts

▸ Support imperative code in the long term, for example building upon OptiTrust

annotations to keep analyzing functional specifications

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 49

Thanks!

Discussion points:

▸ Do you write optimized code or libraries by hand?

▸ Would you use an optimization assistant?

▸ What do you need from it?

▸ How do you want to interact with it? With scripts? With sketches? With cost

functions? What kind of feedback?

▸ Would you create your own libraries of domain-specific abstractions and

optimizations?

▸ What kind of numerical accuracy guarantees or capabilities do you need? Would

you write accuracy specifications and what would they look like?

▸ Do you have benchmarks of progressive difficulty for us to look into?

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 50

The End

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 51

