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Optimizing Programs
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optimized code

+ time
+ energy
+ memory

Why?
- massive data and compute
- tight constraints
- better results

Which Applications?
- image processing
- physics simulation
- machine learning
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Automatic Program Optimization (GCC/Clang)
initial code
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optimized codecompiler(s)

divide and conquer:
1. code fragments
2. compilation passes 

+ automatic
+ local optimizations
- global optimizations
- fragile heuristics
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Manual Program Optimization (BLAS/MKL)
initial code
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optimized code

holistic exploration :
1. manual rewrites
2. empirical choices

+ global optimizations
+ human expertise
- time consuming
- error prone

expert
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Manual Program Optimization (BLAS/MKL)
initial code
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Matrix Multiplication, initial

C code

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
float sum = 0.0f;
for (int k = 0; k < p; k++) {
sum += A[i][k] * B[k][j];

}
C[i][j] = sum;

}
}

150× faster,

7× bigger

float* pB = (float*) malloc(sizeof(float[32][256][4][32]));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {
for (int bk = 0; bk < 256; bk++) {
for (int k = 0; k < 4; k++) {
for (int j = 0; j < 32; j++) {
pB[32768 * bj + 128 * bk + 32 * k + j] = B[1024 * (4 * bk + k) + 32 * bj + j];

} } } }
#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {
for (int bj = 0; bj < 32; bj++) {
float* sum = (float*) malloc(sizeof(float[32][32]));
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum[32 * i + j] = 0.;

} }
for (int bk = 0; bk < 256; bk++) {
for (int i = 0; i < 32; i++) {
float s[32];
memcpy(s, &sum[32 * i], sizeof(float[32]));

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 0] * pB[32768 * bj + 128 * bk + 32 * 0 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 1] * pB[32768 * bj + 128 * bk + 32 * 1 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 2] * pB[32768 * bj + 128 * bk + 32 * 2 + j];

#pragma omp simd
for (int j = 0; j < 32; j++)
s[j] += A[1024 * (32 * bi + i) + 4 * bk + 3] * pB[32768 * bj + 128 * bk + 32 * 3 + j];

memcpy(&sum[32 * i], s, sizeof(float[32]));
} }
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
C[1024 * (32*bi + i) + 32*bj + j] = sum[32*i + j];

}
}
free(sum);

}
free(pB);
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What Future for Program Optimization?

▸ compilers answer neither current nor future optimization needs

▸ algorithms and hardware architectures evolve faster than compilers

▸ falling back to manual optimization slows down progress

PLDI 2024 Keynote: The Future of Fast Code: Giving Hardware What It Wants
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Towards Interactive Optimization
initial code
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optimized code

holistic exploration:
1. automated rewrites
2. guided searches

+ global optimizations
+ human expertise
+ (semi-)automatic
+ correct by construction
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User-Guided Program Optimization (Halide)

▸ Industry adoption with, e.g. code optimized in Adobe Photoshop

▸ Academic community with first "User-Schedulable Languages" workshop in 2025
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PhD: Rewriting Functional Programs (Rise)

the "right" choice

(map f) . (map g) = map (f . g)

rewrite rules

combinatorial rewriting space, correct and extensible
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PostDoc: Transforming Imperative Programs (OptiTrust)
void mm(float* c, float* a, float* b, int m, int n, int p) {
__requires("A: int * int → float, B: int * int → float");
__reads("a ↝ Matrix2(m, p, A), b ↝ Matrix2(p, n, B)");
__writes("c ↝ Matrix2(m, n, matmul(A, B, p))");

for (int i = 0; i < m; i++) { // [...]
for (int j = 0; j < n; j++) {
__xwrites("&c[i][j] // matmul(A, B, p)(i, j)");

float s = 0.f; // [...]
for (int k = 0; k < p; k++) {
__spreserves("&s // sum(k, fun k0 → A(i, k0) *. B(k0, j))");
s += a[i][k] * b[k][j];
// [...]

}

c[i][j] = s;
} } }

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 11



PostDoc: Transforming Imperative Programs (OptiTrust)

Function.inline_def [cFunDef "mm"];
let tile (id, tile_size) = Loop.tile (int tile_size)
˜index:("b" ^ id) ˜bound:TileDivides [cFor id] in

List.iter tile [("i", 32); ("j", 32); ("k", 4)];
Loop.reorder_at
˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"] [cPlusEq ()];

Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB"
˜indep:["bi"; "i"] [cArrayRead "B"];

Matrix.stack_copy ˜var:"sum" ˜copy_var:"s"
˜copy_dims:1 [cFor ˜body:[cPlusEq ()] "k"];

Omp.simd [cFor ˜body:[cPlusEq ()] "j"];
Omp.parallel_for [cFunBody "mm1024"; cStrict; cFor ""];
Loop.unroll [cFor ˜body:[cPlusEq ()] "k"];
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Vision: Interactive Optimization Across the Stack

physics
simulation

image
processing

machine
learning

CPU

GPU

CGRA,
FPGA

Optimization Assistant

Goal:
build the first

that adapts to domain and hardware evolution,
and avoids falling back to manual optimization
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Vision: Interactive Optimization Across the Stack

image
processing

CPU

6 expert optimizations
⟶ decomposed into 74 rules

Harris:
corner 
and edge
detection

1.4x faster than Halide! 
[CGO'21 A]

16x faster than OpenCV, 
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Vision: Interactive Optimization Across the Stack
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Vision: Interactive Optimization Across the Stack

Axis 3 : interactivity

physics
simulation

Axis 2 : domain-specific
transformations

Axis 4 : numerical analysis

Axis 1 : hardware-specific 
transformations

feedback
loop

finite numbers
float

exact arithmetic
ℝ

OpenCL
CUDA

ILADSL

DSL
image

processing

machine
learning

CPU

GPU

CGRA,
FPGA

Optimization Assistant

programmer

C,C++

C,C++
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Axis 2: Libraries of Composable Domain-Specific Transformations

physics
simulation

Axis 2 : domain-specific
transformations

DSL

DSLimage
processing

machine
learning

Optimization Assistant

C, C++

Goal: create an optimization space
 that evolves with domains and
 their specialized languages (DSLs)

Difficulties:
- breaking abstraction and stack boundaries
- facilitate defining custom transformations

Plan:
- AI project: novel ML stack
- long term: mixing DSLs,
 libraries = functions
 + transformations
 + heuristics
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Axis 2: Libraries of Composable Domain-Specific Transformations
// library of (unoptimized) functions

decl dot (k: nat) (A B: k.real): real

// library of transformations

rule dot_comm (k: nat) (A B: k.real):
dot A B = dot B A

rule dot_to_imperative (k: nat) (A B: k.real):
imp (dot A B) = { reads a ~> A, b ~> B, writes c ~> dot A B
var s = 0
for i in range(k) {

s += a[i] * b[i]
}
c = s

}

// ... use optimization assistant to derive optimized code ...
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Axis 3: Interactivity between Programmer and Assistant

Axis 3 : interactivity

feedback
loop

Optimization Assistant

programmer

Goal: develop an interactive feedback loop allowing
 to productively explore the optimization space

Difficulty:
- exploring a complex and evolving optimization space

Plan:
- now: sketch-guided optimization of imperative code 

hybrid polyhedric algorithm
- later: optimization suggestions and vizualisations 

bottlenecks, hot code
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Sketch-Guided Program Optimization

what do I want? ?

? = sketch
= incomplete program
= set of programs
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Sketch-Guided Equality Saturation
Guided Equality Saturation [POPL'24 A*]

=
automatic rewrite search,

sharing equivalent subterms
 + 

specifying guides as program sketches

guided search :
582x faster, 116x less memory
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Sketch-Guided Polyhedral Compilation

▸ internship and PhD of Valéran Maytié

▸ supervised together with Cédric Bastoul and Christophe Alias

Sketch?

Specification

A[i], B[i] : { 1 �� i �� N }

out E[i] : { 0 �� i < N } �� C[i] + D[i+1]
D[i] : { 1 �� i �� N } �� A[i] + B[i]
C[i] : { 0 �� i < N }

for i {
  D[i];
  E[i];
}

evar [ce, cd] { ce = cd - 1 }
for i in { 1 �� i�cd �� N } {
  D[i�cd] = A[i�cd] + B[i�cd];
  E[i�ce] = C[i�ce] + D[i�ce+1];
}

Output
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Half Time
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Axis 4: Guaranteeing Numerical Accuracy during Optimization

Axis 4 : numerical analysis

finite numbers
float

exact arithmetic
ℝ

Goal: guarantee numerical accuracy during optimization,
 avoid errors and allow optimizations

 error-tolerant trigonometric function = 4x faster 
fixed point numbers for FPGA

Difficulty:
- most compilers do not perform numerical analyses 

'gcc': no optimisations over floats
 'gcc -ffast-math': treats floats as reals

International Collaboration:
- Eva Darulova, Uppsala University [TOPLAS'17, SAS'23]

Plan:
- now: functional language on arrays 
- later: imperative language
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Floating Point Analysis and Optimization Tools
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Floating Point Analysis and Optimization Tools

▸ tools to tune the precision of variables and operations (mixed-precision tuning)
▸ tools that rewrite arithmetic expressions

▸ no tool that applies advanced compiler optimizations over loops and arrays
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Floating Point Analysis and Optimization Tools

[SAS’23]
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Ingredient 1: Data Flow Analysis
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Ingredient 2: Abstraction of Floating Point Operations
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Novel Ingredient: Grouped Analysis of Array Elements
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Benchmarks
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Scalability Results
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Combining Analysis and Optimization

2 Master Theses supervised with Eva Darulova:
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Simon’s Work
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Simon’s Work
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Simon’s Work
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Simon’s Work
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Simon’s Work
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Simon’s Work
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Simon’s Work
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Filip’s Work

▸ curated a set of benchmark Rise programs

▸ each with an unoptimized reference and optimized variants

▸ generated executable code for both standard and high-precision evaluation (MPFR)

shadow execution technique
▸ visualized the trade-offs between accuracy and performance

▸ tested different input distributions varying subnormal values and large dynamic

ranges
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Filip’s Work
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Filip’s Work
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Filip’s Work
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Filip’s Work

ULP = Unit in the Last Place ≃ spacing between adjacent representable numbers
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Filip’s Work
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Filip’s Work
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Filip’s Work
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Future Work

▸ Porting Daisy analysis directly over Rise programs

▸ Arbitrary dimensions, mixed precision, and mixing rewrites preserving either real

semantics or float semantics

▸ More advanced design-space exploration and visualizing pareto fronts

▸ Support imperative code in the long term, for example building upon OptiTrust

annotations to keep analyzing functional specifications
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Thanks!

Discussion points:

▸ Do you write optimized code or libraries by hand?

▸ Would you use an optimization assistant?

▸ What do you need from it?

▸ How do you want to interact with it? With scripts? With sketches? With cost

functions? What kind of feedback?

▸ Would you create your own libraries of domain-specific abstractions and

optimizations?

▸ What kind of numerical accuracy guarantees or capabilities do you need? Would

you write accuracy specifications and what would they look like?

▸ Do you have benchmarks of progressive difficulty for us to look into?
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The End
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