Towards Interactive Program Optimization with
Guaranteed Numerical Accuracy

Thomas K&HLER 4@ thok.eu

@

October 2025, IRMIA++ Seminar, Strasbourg

https://thok.eu

My Career

2018
1 PhD Glasaow Un1vers1ty
with Michel Steuwer and Phil Trinder J ' Glasgow
-+ 2020
"] R&D Internship Edinburgh A Huawer
-+ 2022
PostDoc T,
4 2024 with Arthur Charguéraud Inria CAMUS &7’%
Strasbourg
Oct =
-+ . CRCN Researcher

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Optimizing Programs

initial code optimized code
I N N
P | p—
| — —
S||— +time O
g | p— +energy [
I +memory |—
} — —
o —
poll | p— > [——
U— | | Why? Which Applications? e —
1 - massive data and compute - image processing -
'g — - tight constraints - physics simulation —
5 — - better results - machine learning e
'g_ — —
Ql|l— j—
o | p—

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Automatic Program Optimization (GCC/Clang)

initial code compiler(s) optimized code
=} —
© P (R
S A

divide and conquer:
- 1. code fragments

library 1

| S 2. compilation passes

i 1 + automatic
A +l0cal0ptimizati0ns B
[ST - global optimizations [...,

u - fragile heuristics

I N O

application

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Automatic Program Optimization (GCC/Clang)

initial code compiler(s) optimized code

m [-
I WY, WIS/ W -
[| Ee— r—
g _— | Machine Learning Systems are Stuck in a Rut R O
N [} ooy ety s | /=
E\ - ::\ p—
Sll=1 calling for a different approach : S
[l | P | SR new learning algorithms are poorly e | —

. T optimized by compilers -
Sll—— + —
%_ — T = 1Tdgite TIeuTrIstucs —
o||l— H

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

initial code

Manual Program Optimization (BLAS/MKL)

expert

T a
|| — |-
&ll— ‘ ,O M N 0
o ——— . . .)
e | [— @E] holistic exploration: | R

| — 0= 1. manual rewrites B
| — : 2. empirical choices ' § -
o= P—
(=| of—o=—1r—3
IoY | E— E D\D 0"
=|(|—— 0 % §

|— Qo B

-y I 0O

c ~+ D< . l b l_ t . o L %
§ —] + global optimizations »
Bll——| : + human expertise 0
S|l |- - time consuming | o
gl—| i -
| —t - error prone 13

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

optimized code

TP VA

library 2

library 1

application

initial code
N

Manual Program Optimization (BLAS/MKL)

Matrix Multiplication, initial
C code

optimized code

for (int i = 0; 1 < m; i++) {
for (int j = o; j < n; j++) {
float sum = o.
for (int k = o; < p; k++) {
sum += A[l][k] * B[k][J],

}
Clil[j] =
}

O
-

sum;

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

150x faster,
7x bigger

el lzse I T)):

KT - Bl s b e 0 32 e by < T

What Future for Program Optimization?

» compilers answer neither current nor future optimization needs
» algorithms and hardware architectures evolve faster than compilers

» falling back to manual optimization slows down progress

PLDI 2024 Keynote: The Future of Fast Code: Giving Hardware What It Wants

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

https://www.youtube.com/watch?v=66oKqvwoIv0&t=1182s

Towards Interactive Optimization

initial code

library 2

o

B

library 1

application

=[] N

B holistic exploration:
[0 1. automated rewrites
2. guided searches

B

U
No—1

—

09 - global optimizations

+ human expertise

+ (semi-)automatic

+ correct by construction

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

o o

optimized code

TV O A

User-Guided Program Optimization (Halide)

Func blur_3x3(Func input) {
Func blur_x, blur_y;
var x, y, xi, yi;

’/ The algorithm - no stg or der
blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+l, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

/ The hedule - defines order, locality; implies storage
blur_y.tile(x, y, xi, yi, ,)
.vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x,

return blur_y;

*» Industry adoption with, e.g. code optimized in Adobe Photoshop
» Academic community with first "User-Schedulable Languages" workshop in 2025

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

PhD: Rewriting Functional Programs (Rise)

rewrite rules 0O 0
(map f) . (map g) = map (f . g)

combinatorial rewriting space, correct and extensible
0O

O ~ T ——

- "
0 o

idef mmBlocked a b =

def mm a b = \ join (nap_ (s join) (map transpose (map
map (AaRow. D\ (map A
TeduceSeq (1x3. Axi.
map (AbCol. D reducegeq AX5. AX6.
]

dot aRow bCol) L f) et 1 Cona € .
map (Ax7. (fst x7) + (fst (snd x7)) x (snd (snd x7
(transpose b)) a (map (Ax7. zip (fst x7) (snd x7)) (zip x5 x6)))
(transpose (map transpose

def dot xs ys = (generate (Ax3. generate (Ax4.
reduce + 0 transpose (map transpose x2))
(map (A(x, y)A X X y) (map (map (map (map (split 4))))

(map transpose

(zip xs ys))

(snd (unzip (map unzip map (Axs zip (fst x5) (snd x5)) (zip x3 x4)))))))
))

(map (map (Ax2. map (map (zip x2) (split 32 (transpose b))))) split 32 a))))))

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

10

PostDoc: Transforming Imperative Programs (OptiTrust)

void mm(float* c, float* a, float* b, int m, int n, int p) {
__requires("A: int * int - float, B: int * int — float");
__reads("a ~ Matrix2(m, p, A), b ~ Matrix2(p, n, B)");
__writes("c ~ Matrix2(m, n, matmul(A, B, p))");

for (int i =0; i <m; i++) { // [...]
for (int j = 0; j < n; j++) {
_xwrites("&c[i][j] ~~ matmul(A, B, p)(i, j)");

float s = o.f; // [...]

for (int k = 0; k < p; k++) {
__spreserves("ss ~~ sum(k, fun ke — A(i, ke) *. B(ke, j))");
s += al[i][k] * b[k]I[j1;
Y72 |

}

c[ill[3i] = s;
P

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

PostDoc: Transforming Imperative Programs (OptiTrust)

Function.inline_def [cFunDef "mm"];
let tile (id, tile_size) = Loop.tile (int tile_size)
~index:("b" ” id) ~bound:TileDivides [cFor id] in
List.iter tile [("i", 32); ("j", 32); ("k", 4)];
Loop.reorder_at
~order:["bi"; "bj"; "bk"; "i"; "k"; "j"]1 [cPlusEq ()1;
Loop.hoist_expr ~dest:[tBefore; cFor "bi"] "pB"
~indep:["bi"; "i"] [cArrayRead "B"];
Matrix.stack_copy ~var:"sum" ~copy_var:"s"
~copy_dims:1 [cFor ~body:[cPlusEq ()] "k"I;
Omp.simd [cFor ~body:[cPlusEq ()] "j"1;
Omp.parallel_for [cFunBody "mmie24"; cStrict; cFor ""];
Loop.unroll [cFor -body:[cPlusEq ()] "k"1;

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Vision: Interactive Optimization Across the Stack

image
processing

machine
learning

physics
simulation

2

Goal:
build the first
Optimization Assistant

&, 5 /:D

n==—0=—"1
\DK

D

that adapts to domain and hardware evolution,
and avoids falling back to manual optimization

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

13

Vision: Interactive Optimization Across the Stack

image g
processing

Harris:
corner », 0
and edge - /D/;
detection D<ED/\E
DK
0

1 6 expert optimizations
=|2[[-1 o 1]
1

-1 0 1
20 2 — decomposed into 74 rules _
- 16xf registers
10 1 x faster than OpencCV,
1.4x faster than Halide!
[EEEE]
[CGO'21A] >

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Vision: Interactive Optimization Across the Stack

94 GPU Gems 3

ot

GPU Gems 3 is now available for free online!

Chapter 40. Incremental
Computation of the Gaussian

40.6 Conclusion

We have presented a very simple technique to evaluate the Gaussian at regularly spaced points. It is not an approximation,
and it has the simplicity of polynomial forward differencing, so that only one vector instruction is needed for a coefficient
update at each point on a GPU.

The method of forward quotients can accelerate the computation of any function that is the exponential of a polynomial.
Modern computers can perform multiplications as fast as additions, so the technique is as powerful as forward

differencing. This method opens up incremental computations to a new class of functions.

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Vision: Interactive Optimization Across the Stack

o Axis 1: hardware-specific
Axis 2 : domain-specific «.... . transformations
transformations !

image DSL Optipization Assjstant

H : : c,C
processing — a '.b ¥ = / ++ @ CPU

machine LI Eeiid
X CyC++ | — B e — 3 | OpenCL
learning g — D D\ CUDA

0
~n D CUDA
physics DSL 4 \

ILA H
simulation — feedback —_ .
loop

exact arithmetic Axis 3 : interactivity @ finite numbers
o]
R > float

programmer

Axis 4 : numerical analysis

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

16

Axis 2: Libraries of Composable Domain-Specific Transformations

Axis 2 : domain-specific

transformations

image
processing
machine
learning
physics
simulation

°

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

C, C++

Goal: create an optimization space

Opfi‘tpization Assistant

ne—fe=
.. 0
—

Difficulties:

that evolves with domains and
their specialized languages (DSLs)

Plan:
- Al project: novel ML stack
- long term: mixing DSLs,
libraries = functions
+ transformations
+ heuristics

- breaking abstraction and stack boundaries
- facilitate defining custom transformations

17

Axis 2: Libraries of Composable Domain-Specific Transformations

// library of (unoptimized) functions
decl dot (k: nat) (A B: k.real): real
// library of transformations

rule dot_comm (k: nat) (A B: k.real):
dot A B = dot B A

rule dot_to_imperative (k: nat) (A B: k.real):
imp (dot A B) = { reads a ~> A, b ~> B, writes c ~> dot A B
var s = 0

for i in range(k) {
s += a[i] = b[i]
:

=S

}

// ... use optimization assistant to derive optimized code ...

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

18

Axis 3: Interactivity between Programmer and Assistant

Goal: develop an interactive feedback loop allowing
to productively explore the optimization space

Plan: N .
- now: sketch-guided optimization of imperative code Optimization Assistant
hybrid polyhedric algorithm
ybrid polyhedric algorithn », T
- later: optimization suggestions and vizualisations R
De=——D=——"
bottlenecks, hot code \ZD>‘D
Difficulty: feedback
- exploring a complex and evolving optimization space '°°P
Axis 3: interactivit)
Y Gf@
programmer

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Sketch-Guided Program Optimization

/0!:? . whatdoLwant?

L

= sketch
= incomplete program

= set of programs

,
1 >

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 20

Sketch-Guided Equality Saturation

Guided Equality Saturation [POPL'24 A% guided search :
= 582x faster, 116x less memory

automatic rewrite search,
sharing equivalent subterms
+

specifying guides as program sketches

containsMap(m/32, containsMap(m/32,
containsMap(32, containsMap(n/32,
containsMap(n/32, containsReduceSeq(k/s,
containsMap(32, containsReduceSeq(s,
containsReduceSeq(k/4, containsMap(32,
containsReduceSeq(s, containsMap(32,
containsAddMul)))))) containsAddMul))))))

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 21

Sketch-Guided Polyhedral Compilation

» internship and PhD of Valéran Maytié
» supervised together with Cédric Bastoul and Christophe Alias

D Specification

A[il, B[i] : {1 < i € N}

cli] : {0 < i<N}

D[i] : {1 < i < N} := A[i] + B[i]
out E[1] : { @ € i < N } := Cc[i] + D[i+1]

Sketch

D Output

evar [ce, cd] { ce = cd - 1}

for 1 { for i in { 1 < i+cd < N } {
D[il; D[i+cd] = A[i+cd] + B[i+cd];
E[i]; E[i+ce] = C[i+ce] + D[i+ce+1];
} }

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

22

Half Time

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

23

Axis 4: Guaranteeing Numerical Accuracy during Optimization

Goal: guarantee numerical accuracy during optimization,
avoid errors and allow optimizations

error-tolerant trigonometric function = 4x faster
fixed point numbers for FPGA

Difficulty:

- most compilers do not perform numerical analyses
‘gcc’: no optimisations over floats
‘gce -ffast-math': treats floats as reals

International Collaboration:
- Eva Darulova, Uppsala University [TOPLAS'17, SAS'23]

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

exact arithmetic

finite numbers
float

AXxis 4 : numerical analysis

Plan:

- now: functional language on arrays
- later: imperative language

Floating Point Analysis and Optimization Tools

-—// FPTalks Community Tools
&‘\ Numerics research tools and systems

Events Education Tools MailingList About

The floating-point research community has developed many tools that authors
of numerical software can use to test, analyze, or improve their code. They are
listed here in alphabetical order and categorized into three general types: 1)
dynamic tools, 2) static tools, 3) commercial tools, and 4) miscellaneous. You
can find tutorials for some of these tools at fpanalysistools.org, and many of
the reduced-precision tools were compared in a 2020 survey @ by authors
from the Polytechnic University of Milan.

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 25

Floating Point Analysis and Optimization Tools

» tools to tune the precision of variables and operations (mixed-precision tuning)
» tools that rewrite arithmetic expressions

* no tool that applies advanced compiler optimizations over loops and arrays

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

26

Floating Point Analysis and Optimization Tools

Scaling up Roundoff Analysis
of Functional Data Structure Programs

Anastasia Isychev! ®*9® and Eva Darulova?

[SAS’23]

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

27

Ingredient 1: Data Flow Analy5|s

25 e
Dataflow-based %‘

luctuat
with interval-like abstract domains

+ [500, 6800]

[100,400] * % [400,6400]
9.95e- 14/ \ /\1.606—12
10, 20] [10,20] [20,80] [20, 80]

[-1.78e-15, 1.78e-15 7.11e-15 7.11e-15
1.78e-15]

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

28

Ingredient 2: Abstraction of Floating Point Operations

Arithmetic operations: computed as if with real arithmetic and then rounded

« Different rounding modes: to nearest (default), to 0, to +/- infinity
e Abstraction for arithmetic operations and rounding to nearest:

float machine epsilon
op=op(l+e)+d wherele|<el|d <o
real subnormal numbers

e (special values (NaN, infinity) - ignore for this talk)

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

29

Novel Ingredient: Grouped Analysis of Array Elements

o functional DSL over real-valued vectors and matrices
o data structure (DS) abstraction val r = v.map(x => x + 3.5)

group DS elements by range [0.0,1.0][2.5,4.0]

e transfer functions

analyze once per unique range
reduce to straight-line dataflow analysis

with interval arithmetic

hiding a lot of details [3.5,4.5] [6.0,7.5]

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

30

Benchmarks

o statistical computations
« digital filters

« differential equations

« signal processing

« stencil computations

« neural networks

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

avg, stdDeviation, variance

rouxl, goubault, harmonic, nonlin{1-3}
lorenz, pendulum

alphaBlending, fftvector, fftmatrix
convolve2d_size3, sobel3, heatld

lyapunov, controllerTora

31

Scalability Results

Large Benchmarks non-trivially analyzed

30 minute timeout

DS2L Fluctuat Satire
(unrolling)

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

e benchmark sizes: 10k - 708k iterations

e arithm. ops/iteration: 1 - 1k

e on average on large benchmarks:
DS2L is >20x resp. >250x faster
e DS2U's errors ~2x larger than Fluctuat’s

e DS2Ls errors comparable to Satire

32

Combining Analysis and Optimization

2 Master Theses supervised with Eva Darulova:

Numerical Analysis and Optimisation of Functional
Array Programs

Simon Bjoérklund

Exploring Accuracy and Performance Trade-offs in Functional
Array Programs

Filip von Knorring

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

33

Simon’s Work

Daisy Shine

- Bounds rounding errors using static - Compiles a language called Rise into
analysis low-level languages like C
- Implements several different methods - Uses the high-level formulation to

. perform optimisations
- Can now analyse functional array

programs - The optimisations can be customised

. . for different applications
- Programs are given in a language called

DS2L (DS - DSL) - For us: only those that preserve
floating-point behaviour

€9 RISE

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 34

Simon’s Work

def dot(a: Vector, b: Vector): Real = {

require(
a = 0.0 8& a < 1.0 8& a.size(100) &
b = 0.08& b < 1.0 8& b.size(100)

)

(a * b).sum()

depFun((n: Nat) = fun(n.f64)(a = fun(n.f64)(b =
zip(a) (b)
D> map(fun(x = fst(x) * snd(x)))
D> reduce(add) (1f64(0.0))
1)

void dot(doublex output, int n, doublex a, doublex b) {
for (int i = 0; i < n; i+) {
output += (a[i] * b[i]);
b

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

35

Simon’s Work

Results!

Error bounds

>

Scala
>

>

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Translated a set of 14
benchmarks from DS?L to Rise

Neither can be ran, so we
compile them further

DS?L - Scala, Rise » C

Run both programs with 500
random inputs

Compare performance and
output values of both

36

Simon’s Work

Benchmark Iterations Median Scala Time Median C Time Speedup
“alphaBlending 500k 20d6ms - 10 18ns - 000 ax

avg 500k 591ns 37ns S 16x
controllerTora 29k 6585ns -+ 3 3178ns 2x
goubault 500k 533ns 93ns 6x
harmonic 500k 637ns 143ns 4x
lorentz 500k 263ns T4ns 4x
lyapunov 500k 1909ns 31ns 62x
nonlinl 178k 940ns + ¢ 453ns 2x
nonlin2 303k 524ns -+ 2 249ns 2x
nonlin3 208k 897ns S 382ns S 2x
pendulum 100k 6159ns -+ 3 797ns 8x

rouxl 500k 533ns 93ns 6x
stdDeviation 500k 1058ns -+ 112ns 9x
variance 500k 1057ns + 7 111ns 10x

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Simon’s Work

def lorentz(m: Matrix): Vector = {
require(m = 1.0 8& m < 2.0 && m.size(21,3))

val init: Vector = m.row(0)
m.fold(init) ((acc, v) = {
val x:Real = acc.at(0)
val y:Real = acc.at(1)
val z:Real = acc.at(2)
val tmpx:Real = x + 10.0%(y - x)*0.005
val tmpy:Real =y + (28.0%x - y - x%z)*0.005
val tmpz:Real = z + (xxy - 2.666667%2)%0.005
Vector(List (tmpx, tmpy,tmpz))

ror is 43e-14

D)
2 Er

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 38

Simon’s Work

depFun((n: Nat) =
fun(n.3.f64)(m =
fun(init =
m D reduceSeq(fun(acc = fun(v =
fun(x =
fun(y =
fun(z =
fun(tmpx =
fun(tmpy =
fun(tmpz =
makeArray (3) (tmpx) (tmpy) (tmpz) D> mapSeqUnroll(fun(x = x)) D toMem
)
((z + (((x *y) - (LF64(2.666667) * 2)) * 1f64(0.0085))))
)
((y + ((((LF64(28.0) * x) - y) - (x *x 2)) * 1f64(6.005))))

)((X + ((1f64(10.0) * (y - x)) * 1f64(0.005))))
)(acc D> element(2))
)(acc D> element(1))
)(acc D> element(0))
))) (init)
)(m D> element(0))
))

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 39

Simon’s Work

void lorentz(doublex output, int n, doublex m) {
// set fold init as first row of m
for (int i =0; i< 3; i+) {
output[i] = m[i];
Ir

// perform fold, storing the accumulator in output

for (int i = 0; i <n; i+) {
output[0] += ((16.0 * (output[1] - output[B])) * 0.005);
output[1] += ((((28.0 * output[0]) - output[1]) - (output[®] * output[2])) * 0.005);
output[2] += ((Coutput[B] * output[1]) - (2.666667 * output[2])) * 0.005);

3

grror is st
A3e-14

ill

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

40

Filip’'s Work

> curated a set of benchmark Rise programs
» each with an unoptimized reference and optimized variants

» generated executable code for both standard and high-precision evaluation (MPFR)
shadow execution technique

» visualized the trade-offs between accuracy and performance

» tested different input distributions varying subnormal values and large dynamic
ranges

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 41

Filip’s Work

Controls
Unoptimized RISE File * ‘Optimized RISE File (optional) Performance Dislriblltion
Jexamples/mm.rise Selectafile
Skip RISE to C compilation Distribution ~ Statistics
Advanced Input Configuration v 16
Iterations. |
> |
5 S om0 2 14
] |
Inner iterations o |
o |
50 B) & 8
Outer Iterations 3
1 c A w Al
MPFR Precision (bits) Output file Name. |
256 5 driver_compare.c o L
Float Type File Prefix 0.00e+0
Normal Optional prefx for output f
Metrics File
Include negative
metrics.csv. bers.

mpile Driver Run Generated Driver

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

|Il.1‘|||

1.50e-3

Execution Time (seconds)
M Optimized =

—
6.00e-3

42

Controls

Unoptimized RISE File * ‘Optimized RISE File (optional)

Jexamples /mmise Selec

Skip RISE to C compilation

Advanced Input Configuration v
Rerations

50 S0 w0
Inner iterations

50 S0 w50

Outer terations.

1 A a

MPFR precision (bits) Output Fle Name
256 driver_compare.c
Float Type File Prefix
Normal onal prefx for output
Metrics ile

Include negative
numbers

metrics.csv

Run Generated Driver

Filip’'s Work

Accuracy Comparison

0.000008

0.000006-

ol
Unoptimized vs MPFR

Metric Unoptimized

Absolute Error 3.4451782894320786

Relative Error 0.000006571188512796013

uLpPs 110.246249056

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Optmnze(‘] vs MPFR

Optimized
0.1639282894320786
0.00000031266994098466437

5.245731137

43

Filip’'s Work

Sequential Summation
Zo xry T3 Zy Ts5 Ze x7

result

Figure 5.1: Sequential summation of x(through x7, evaluated left to right.

Parallel Summation (Chunked)
z0 1 T 3

T4 s 6 fr,—7>'° result

Figure 5.2: Chunked parallel reduction: pairs of local reductions followed by a
sequential aggregation.
Multi-Level Parallel Reduction
zo xy 5 3 24 a5 z6 a7

|

Ny

result

Figure 5.3: Multi-level parallel reduction with four chunked rows merged into two
intermediaries, then a final result.

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

44

Filip’'s Work

Table 5.1: Summation Benchmark: Performance vs Accuracy

Variant Runtime (avg) Speedup Abs. Err. ULPs Runtime Stats
(min/med/max/stddev)

Sequential 14.27ms 1x 58.47 467.80 12.55ms/13.63ms/
28.94ms/197.90ps

Parallel 4.43ms 3.22x 1.77 14.18 3.17ms/4.28ms/
7.26ms/155.61ps

Multi-Stage Parallel 4.84ms 3.19x 0.97 7.81 2.70ms/4.74ms/
8.11ms/0s

Vectorized Parallel ~ 5.85ms 2.54x 0.02 0.18 3.40ms/5.82ms/

13.57ms/91.89us

ULP = Unit in the Last Place ~ spacing between adjacent representable numbers

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

45

Filip’'s Work

Table 5.2: Average Benchmark: Performance vs Accuracy

Variant Runtime (avg) Speedup Abs.Err. ULPs Runtime Stats
(min/med/max/stddev)

Sequential 5.78ms 1x 7.56e-9 0.25 3.35ms/5.56ms/
11.89ms/85.83pus

Parallel 1.62ms 3.56x 7.56e-9 0.25 750.83ps/1.39ms/

4.49ms/130.24ps

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

46

Filip’'s Work

Table 5.4: Matrix Multiplication Benchmark

Variant Runtime (avg) Speedup Abs.Err. ULPs Runtime Stats
(min/med/max/stddev)

Sequential 577.27ms 1x 2.25e-5 2,81 464.59ms/562.19ms/
2.315/49.91ms

Parallel 265.11ms 2.17x 2.25e-5 2.81 199.70ms/262.77ms/
613.50ms/19.28ms

Float Unsafe Parallel 293.79ms 1.77x 7.27e-6 090 227.03ms/301.46ms/

440.32ms/700.35us

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

47

Filip’'s Work

Table 5.5: Parallel Sum Reduction with Varying Input Distributions

Benchmark Runtime (avg) Speedup Abs. Error ULPs Rel. Error

Normal 4.42ms 3.22x 1.77 14.18 8.45e-7
Negative 4.50ms 3.18x 0.01 1542 9.19e-7
Subnormal 4.39ms 3.26% 1.64e-41 131.59 7.84e-6
Mixed 4.78ms 3.05x 3.73 59.74 3.56e-6
Magnitude 4.74ms 3.09x% 1.57e+19 11.72 6.98e-7

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

Future Work

*» Porting Daisy analysis directly over Rise programs

» Arbitrary dimensions, mixed precision, and mixing rewrites preserving either real
semantics or float semantics

» More advanced design-space exploration and visualizing pareto fronts

» Support imperative code in the long term, for example building upon OptiTrust
annotations to keep analyzing functional specifications

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 49

Thanks!

Discussion points:

4

>

>

Do you write optimized code or libraries by hand?
Would you use an optimization assistant?
What do you need from it?

How do you want to interact with it? With scripts? With sketches? With cost
functions? What kind of feedback?

Would you create your own libraries of domain-specific abstractions and
optimizations?
What kind of numerical accuracy guarantees or capabilities do you need? Would

you write accuracy specifications and what would they look like?

Do you have benchmarks of progressive difficulty for us to look into?

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy 50

The End

Towards Interactive Program Optimization with Guaranteed Numerical Accuracy

51

