
Guided Equality Saturation

Thomas Kœhler Andrés Goens Siddharth Bhat Tobias Grosser
Phil Trinder Michel Steuwer

POPL Conference — London, January 2024

The Limits of Greedy Term Rewriting
Example: Eliminating Intermediate Memory with Fusion

Program to Optimize:

(map (map f)) ◦ (transpose ◦ (map (map g)))

Rewrite Rules:

(1) map a ◦ map b ↦ map (a ◦ b)

uses less memory local optimum,
cannot use less memory?

Guided Equality Saturation 1

The Limits of Greedy Term Rewriting
Example: Eliminating Intermediate Memory with Fusion

Program to Optimize:

(map (map f)) ◦ (transpose ◦ (map (map g)))

((map (map f)) ◦ (map (map g))) ◦ transpose

(map (map (f ◦ g))) ◦ transpose

Rewrite Rules:

(1) map a ◦ map b ↦ map (a ◦ b)

(2); (3)

(1); (1)

global optimum,
uses less memory!

no effect on memory

uses less memory

(2) transpose ◦ map (map a) ↦ map (map a) ◦ transpose
(3) a ◦ (b ◦ c) ↦ (a ◦ b) ◦ c

not explored by greedy rewriting:

Guided Equality Saturation 2

Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

(map (map f)) ◦ (transpose ◦ (map (map g)))

∘

∘map

map map

mapf

g

transpose

initialize equivalence graph
 a.k.a. e-graph

Guided Equality Saturation 3

Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

(map (map f)) ◦ (transpose ◦ (map (map g)))

transpose ◦ map (map g)
 =

map (map g) ◦ transpose

(2)

∘

∘map

map map

mapf

g

transpose

∘

∘map

map map

mapf

g

transpose

∘

records equivalence

Guided Equality Saturation 4

Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

(map (map f)) ◦ (transpose ◦ (map (map g)))

(2) (3); (1); (1)

∘

∘map

map map

mapf

g

transpose

∘

∘map

map map

mapf

g

transpose

∘

∘

∘map

map map

mapf

g

transpose

∘

∘ ∘ map

∘ map

∘

efficiently represents equivalent terms

Guided Equality Saturation 5

Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

∘

∘map

map map

mapf

g

transpose

∘

∘ ∘ map

∘ map

∘

extract term minimizing
memory usage

(map (map f)) ◦ (transpose ◦ (map (map g)))

global optimum,
found by equality saturation [Tate et al. 2009; Willsey et al. 2021]

(map (map (f ◦ g))) ◦ transpose

Guided Equality Saturation 6

The Limits of Equality Saturation
Example: Improving Memory Access Patterns with Tiling

1D Tiling:

(1),(2),(3) + (4) map n1 (map n2 f) ↦ transpose ◦ (map n2 (map n1 f)) ◦ transpose
(5) map (n1 × n2) f ↦ join ◦ (map n1 (map n2 f)) ◦ (split n2)

map (n1 × 32) f

join ◦ (map n1 (map 32 f)) ◦ (split 32)

easy!

1 iteration =
apply rules breadth-first

Memory Footprint (bytes):

Guided Equality Saturation 7

The Limits of Equality Saturation
Example: Improving Memory Access Patterns with Tiling

2D Tiling:

(1),(2),(3) + (4) map n1 (map n2 f) ↦ transpose ◦ (map n2 (map n1 f)) ◦ transpose
(5) map (n1 × n2) f ↦ join ◦ (map n1 (map n2 f)) ◦ (split n2)

map (n1 × 32) (map (n2 × 32) f)

more challenging ...

join ◦ (map n1 (map 32 join)) ◦ (map n1 transpose) ◦
(map n1 (map n2 (map 32 (map 32 f)))) ◦
(map n1 transpose) ◦ (map n1 (map 32 (split 32))) ◦ (split 32)

Memory Footprint (bytes):

Guided Equality Saturation 8

The Limits of Equality Saturation
Example: Improving Memory Access Patterns with Tiling

map (n1 × 32) (map (n2 × 32) (map (n3 × 32) f))

unreachable with 8 Gb!

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 transpose ◦ (map n2 (map 32 transpose) ◦ transpose)) ◦
(map n1 (map n2 (map n3 (map 32 (map 32 (map 32 f)))))) ◦
(map n1 (map n2 transpose)) ◦ (map n1 (map n2 (map 32 transpose)) ◦ transpose) ◦
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

3D Tiling:

(1),(2),(3) + (4) map n1 (map n2 f) ↦ transpose ◦ (map n2 (map n1 f)) ◦ transpose
(5) map (n1 × n2) f ↦ join ◦ (map n1 (map n2 f)) ◦ (split n2)

Memory Footprint (bytes):

extreme e-graph growth

Guided Equality Saturation 9

Guided Equality Saturation

final goalstart

equality saturation

final goal

✘✘
out of resources

unguided:

Guided Equality Saturation 10

Guided Equality Saturation

intermediate goal final goalstart

guided:
equality saturation

final goal

equality saturation equality saturation

intermediate goal

final goalstart

equality saturation

final goal

✔ ✔ ✔

✘✘
out of resources

unguided:

expert

provides guides

Guided Equality Saturation 11

Guided Equality Saturation
Example: Improving Memory Access Patterns with Tiling (3D)

map (n1 × 32) (map (n2 × 32) (map (n3 × 32) f))

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 (map 32 (map n2 (map 32 (map n3 (map 32 f)))))) ◦
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

guide provides insight

1. split the loops

2. reorder them

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 transpose ◦ (map n2 (map 32 transpose) ◦ transpose)) ◦
(map n1 (map n2 (map n3 (map 32 (map 32 (map 32 f)))))) ◦
(map n1 (map n2 transpose)) ◦ (map n1 (map n2 (map 32 transpose)) ◦ transpose) ◦
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

Guided Equality Saturation 12

Guided Equality Saturation
Example: Improving Memory Access Patterns with Tiling (3D)

map (n1 × 32) (map (n2 × 32) (map (n3 × 32) f))

guide is more or less
precise sketch

1. split the loops

2. reorder them

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 transpose ◦ (map n2 (map 32 transpose) ◦ transpose)) ◦
(map n1 (map n2 (map n3 (map 32 (map 32 (map 32 f)))))) ◦
(map n1 (map n2 transpose)) ◦ (map n1 (map n2 (map 32 transpose)) ◦ transpose) ◦
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

(contains
(map n1 (map 32 (map n2 (map 32 (map n3 (map 32 f))))))
)

Guided Equality Saturation 13

Guided Equality Saturation
Example: Improving Memory Access Patterns with Tiling (3D)
m
em

or
y
fo
ot
pr
in
t(
by

te
s)

1 2 3 4 5 6 7 8 ✗

iterations

107

108

109

1010 8Gb

memory
estimate

(a) Equality saturation (found: ✗)

1 2 3 4 5 6 7 ✓
iterations

107

108

109

1010 8Gb

1 2 3 4 5 6 ✓
iterations

107

108

109

1010 8Gb

(b) Guided equality saturation (found: ✓)

▶ A single guide makes 3D Tiling reachable with 8Gb!

Guided Equality Saturation 14

Case Study: Program Optimization

▶ We reproduced Matrix Multiplication optimizations from TVM:
https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html

▶ transform loops blocking, permutation, unrolling
▶ change data layout
▶ add parallelism vectorization, multi-threading

▶ Prior work performs them by manually composing rewrite rules [ICFP 2020; CACM 2023]

Guided Equality Saturation 15

https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html

Case Study: Program Optimization
Unguided Runtime and Memory Consumption

5 goals are too hard to find with
unguided equality saturation

Guided Equality Saturation 16

Case Study: Program Optimization
Guided Runtime and Memory Consumption

582x faster 116x less

All found with up to 3 guides,
eliding 90% of the complete program

Guided Equality Saturation 17

Case Study: Theorem Proving

▶ We implemented a ges tactic for the Lean theorem prover:
key
reasoning step

▶ Steps and details are omitted:

(g−1)−1 mul. one−−−−−−−→ (g−1)−1 · 1 mul. inverse−−−−−−−−−−→ (g−1)−1 · (g−1 · g)
mul. assoc.−−−−−−−−−→ ((g−1)−1 · g−1) · g mul. inverse−−−−−−−−−−→ 1 · g mul. one−−−−−−−→ g

Guided Equality Saturation 18

Case Study: Theorem Proving
Proving Theorems on Rings of Characteristic 2∗

(x + y)2 = x2 + y2

negligible overhead

~4mn

~480x faster

<1s

(x + y)3 = x3 + x · y2 + x2 · y + y

>20mn

<1s

1 good guide is enough

∗1 + 1 = 0, x + x = 0

Guided Equality Saturation 19

Conclusion

▶ Guided Equality Saturation offers an effective trade-off between manual and
automated rewriting

▶ For program optimization, guides resemble explanatory code snippets
▶ For theorem proving, guides resemble key reasoning steps from textbooks
▶ More details in our paper, supplementary material and open-source code!

thomas.koehler@thok.eu
� thok.eu Thanks!

Guided Equality Saturation 20

thok.eu

Conclusion

▶ Guided Equality Saturation offers an effective trade-off between manual and
automated rewriting

▶ For program optimization, guides resemble explanatory code snippets
▶ For theorem proving, guides resemble key reasoning steps from textbooks
▶ More details in our paper, supplementary material and open-source code!

thomas.koehler@thok.eu
� thok.eu Thanks!

Guided Equality Saturation 21

thok.eu

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Guided Equality Saturation 22

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ A sketch s is satisfied by a set of terms R(s):

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

R(containsAddMul) = { R(app(app(+, ?), contains(×))) } ∪
{ F(t1, .., tn) | ∃ti ∈ R(containsAddMul) }

R(app(app(+, ?), contains(×))) = { app(app(+, t1), t2) | t2 ∈ R(contains(×)) }
R(contains(×)) = { × } ∪ { F(t1, .., tn) | ∃ti ∈ R(contains(×)) }

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Guided Equality Saturation 23

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

Guided Equality Saturation 24

Sketch Definition
S ::= ? | F (S, .., S) | contains(S)

R(?) = T = {F (t1, .., tn)}
R(F (s1, .., sn)) = {F (t1, .., tn) | ti ∈ R(si)}
R(contains(s)) = R(s) ∪ {F (t1, .., tn) | ∃ti ∈ R(contains(s))}

def containsMap(n: NatSketch, f: Sketch): Sketch =
contains(app(map :: ?t → n.?dt → ?y, f))

def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

Guided Equality Saturation 25

Rewritten Language

▶ Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

def mm a b =
map (𝜆aRow. | for aRow in a:

map (𝜆bCol. | for bCol in transpose(b):
dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (𝜆(x, y). x × y) | acc += x × y
(zip xs ys))

Guided Equality Saturation 26

Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)

Guided Equality Saturation 27

Difficulty 1. Long Rewrite Sequences

map (𝜆aRow. | for m:
map (𝜆bCol. | for n:
dot aRow bCol) | for k:
(transpose b)) a | ...

7→∗

Prior work (not shortest path):

join (map (map join) (map transpose
map | for m / 32:

(map 𝜆x2. | for n / 32:
reduceSeq (𝜆x3. 𝜆x4. | for k / 4:

reduceSeq 𝜆x5. 𝜆x6. | for 4:
map | for 32:
(map (𝜆x7. | for 32:
(fst x7) + (fst (snd x7)) ×

(snd (snd x7)))
(map (𝜆x7. zip (fst x7) (snd x7))

(zip x5 x6)))
(transpose (map transpose
(snd (unzip (map unzip map (𝜆x5.

zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (𝜆x3. generate (𝜆x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose

(map (map (𝜆x2. map (map (zip x2)
(split 32 (transpose b)))))

split 32 a))))))

Guided Equality Saturation 28

Difficulty 2. Explosive Combinations of Rewrite Rules
Two example rules that quickly generate many possibilities:

split-join:

map f x | for m:
| ... = f(...)

7→
join

(map | for m / n:
(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
7→

transpose
(map | for n:

(map f) | for m:
(transpose x)) | ... = f(...)

Guided Equality Saturation 29

Handwritten Matrix Multiplication
for (int im = 0; im < m; im++) {

for (int in = 0; in < n; in++) {
float acc = 0.0f;
for (int ik = 0; ik < k; ik++) {
acc += a[ik + (k * im)] * b[in + (n * ik)];

}

output[in + (n * im)] = acc;
}

}

Optimised program on the right:
+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines of code where things
can go wrong
threads, SIMD, index computations

- hardware specific (not portable)

float aT[n * k];
#pragma omp parallel for
for (int in = 0; in < (n / 32); in = 1 + in) {

for (int ik = 0; ik < k; ik = 1 + ik) {
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
}

}
}
#pragma omp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {

for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];
for (int jm = 0; jm < 32; jm = 1 + jm) {
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp1[jn + (32 * jm)] = 0.0f;
}

}
for (int ik = 0; ik < (k / 4); ik = 1 + ik) {
for (int jm = 0; jm < 32; jm = 1 + jm) {

float tmp2[32];
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] = tmp1[jn + (32 * jm)];

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((4 * ik) + ((32 * im) * k)) + (jm * k)] * aT[((4 * ik) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((1 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *

aT[((1 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);
}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((2 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *

aT[((2 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);
}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((3 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *

aT[((3 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);
}
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp1[jn + (32 * jm)] = tmp2[jn];

}
}

}
for (int jm = 0; jm < 32; jm = 1 + jm) {
for (int jn = 0; jn < 32; jn = 1 + jn) {

output[((jn + ((32 * im) * n)) + (32 * in)) + (jm * n)] = tmp1[jn + (32 * jm)];
}

}
}

}

Guided Equality Saturation 30

