
Sketch-Guided Program Optimization

Thomas KœhleR Phil TRindeR Michel SteuweR

TUM, Munich — July 2022

A Program Optimization Scenario

▶ imagine a performance engineer
▶ their task is to implement a high-performance matrix multiplication for a CPU
▶ they decide to do this by handwritting C code

Sketch-Guided Program Optimization 1

Optimizing Matrix Multiplication in C
for (int im = 0; im < m; im++) {

for (int in = 0; in < n; in++) {
float acc = 0.0f;
for (int ik = 0; ik < k; ik++) {
acc += a[ik + (k * im)] * b[in + (n * ik)];

}

output[in + (n * im)] = acc;
}

}

Optimized program on the right:
+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines, more complex code
threads, SIMD, indexing

float aT[n * k];
#pragma omp parallel for
for (int in = 0; in < (n / 32); in = 1 + in) {

for (int ik = 0; ik < k; ik = 1 + ik) {
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
}

}
}
#pragma omp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {

for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp1[jn + (32 * jm)] = 0.0f;

}
}
for (int ik = 0; ik < (k / 4); ik = 1 + ik) {

for (int jm = 0; jm < 32; jm = 1 + jm) {
float tmp2[32];
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] = tmp1[jn + (32 * jm)];

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((4 * ik) + ((32 * im) * k)) + (jm * k)] * aT[((4 * ik) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((1 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((1 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((2 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((2 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((3 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((3 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp1[jn + (32 * jm)] = tmp2[jn];
}

}
}
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
output[((jn + ((32 * im) * n)) + (32 * in)) + (jm * n)] = tmp1[jn + (32 * jm)];

}
}

}
}

Sketch-Guided Program Optimization 2

Great performance, but time consuming and error-prone

How can we automate the optimization process?

Sketch-Guided Program Optimization 3

Optimization via Term Rewriting

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

+ convenient, hardware agnostic programming
+ high-performance code generation
+ extensible set of abstractions and optimizations

Sketch-Guided Program Optimization 4

Matrix Multiplication in RISE

High-level RISE program:

def mm a b =
map (𝜆aRow. | for aRow in a:
map (𝜆bCol. | for bCol in transpose(b):

dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (𝜆(x, y). x × y) | acc += x × y

(zip xs ys))

RISE is a functional array language designed for optimization via term rewriting

Sketch-Guided Program Optimization 5

Matrix Multiplication in RISE

High-level RISE program:

def mm a b =
map (𝜆aRow. | for aRow in a:
map (𝜆bCol. | for bCol in transpose(b):

dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (𝜆(x, y). x × y) | acc += x × y

(zip xs ys))

RISE is a functional array language designed for optimization via term rewriting

Sketch-Guided Program Optimization 5

Example RISE Rewrite Rules

split-join:

map f x | for m:
| ... = f(...)

7→
join
(map | for m / n:

(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
7→

transpose
(map | for n:

(map f) | for m:
(transpose x)) | ... = f(...)

Sketch-Guided Program Optimization 6

Matrix Multiplication Blocking in RISE

map (𝜆aRow. | for m:
map (𝜆bCol. | for n:

dot aRow bCol) | for k:
(transpose b)) a | ...

7→∗
join (map (map join) (map transpose

map | for m / 32:
(map 𝜆x2. | for n / 32:

reduceSeq (𝜆x3. 𝜆x4. | for k / 4:
reduceSeq 𝜆x5. 𝜆x6. | for 4:

map | for 32:
(map (𝜆x7. | for 32:
(fst x7) + (fst (snd x7)) ×

(snd (snd x7)))
(map (𝜆x7. zip (fst x7) (snd x7))
(zip x5 x6)))

(transpose (map transpose
(snd (unzip (map unzip map (𝜆x5.

zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (𝜆x3. generate (𝜆x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose

(map (map (𝜆x2. map (map (zip x2)
(split 32 (transpose b)))))

split 32 a))))))

Sketch-Guided Program Optimization 7

How do we decide which rewrite rules to apply?

Sketch-Guided Program Optimization 8

Rewriting Strategies

▶ programmers describe optimizations as compositions of rewrite rules
▶ MM blocking: 1 def blocking = (baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

+ empowers programmers to manually control the rewrite process
+ tile, split, reorder are not built-in but programmer-defined

- transformed program is hidden state that needs to be reasoned about

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.
“Achieving high-performance the functional way: a functional pearl on expressing high-performance
optimizations as rewrite strategies”. In: ICFP (2020)

Sketch-Guided Program Optimization 9

Rewriting Strategies

▶ programmers describe optimizations as compositions of rewrite rules
▶ MM blocking: 1 def blocking = (baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

- requires programmers to order all rewrite steps
- strategies are often restricted and complex to implement
- transformed program is hidden state that needs to be reasoned about

Hagedorn, Lenfers, Koehler, Qin, Gorlatch, and Steuwer, “Achieving high-performance the functional way: a
functional pearl on expressing high-performance optimizations as rewrite strategies”

Sketch-Guided Program Optimization 9

Rewriting Strategies

▶ Performance is on par with TVM for 7 different MM optimization goals:

Great performance, but requires manual rewrite ordering

Sketch-Guided Program Optimization 10

Rewriting Strategies

▶ Performance is on par with TVM for 7 different MM optimization goals:

Great performance, but requires manual rewrite ordering

Sketch-Guided Program Optimization 10

Equality Saturation

input
term

e-graphinitialize

apply

extract

costminimizingrules

final
term

▶ Optimize programs by efficiently exploring many possible rewrites
▶ Many successful applications sparked from the recent egg library

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
“egg: fast and extensible equality saturation”. In: POPL (2021)

No manual rewrite ordering, but does not scale to MM optimizations in RISE

Sketch-Guided Program Optimization 11

Equality Saturation

input
term

e-graphinitialize

apply

extract

costminimizingrules

final
term

▶ Optimize programs by efficiently exploring many possible rewrites
▶ Many successful applications sparked from the recent egg library

No manual rewrite ordering, but does not scale to MM optimizations in RISE

Sketch-Guided Program Optimization 11

To overcome the limitations of rewriting strategies and equality
saturation, we came up with sketch-guided equality saturation

Sketch-Guided Program Optimization 12

Sketch-Guided Equality Saturation
Observation:

▶ The shape of the optimized program is often used to explain optimizations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting

Sketch-Guided Program Optimization 13

Sketch-Guided Equality Saturation
Observation:

▶ The shape of the optimized program is often used to explain optimizations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting

Sketch-Guided Program Optimization 13

Sketch-Guided Equality Saturation

programmer

term1

rules1

search1

cost1

sketch1

rulesN

searchN

costN

sketchN

termN

rulesN+1

searchN+1

costN+1

sketchN+1guides goalprovides

termN+1term0

▶ Factors an unfeasible search into a sequence of feasible ones:
1. Break long rewrite sequences
2. Isolate explosive combinations of rewrite rules

Sketch-Guided Program Optimization 14

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Program Optimization 15

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ A sketch s is satisfied by a set of terms R(s):

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

R(containsAddMul) = { R(app(app(+, ?), contains(×))) } ∪
{ F(t1, .., tn) | ∃ti ∈ R(containsAddMul) }

R(app(app(+, ?), contains(×))) = { app(app(+, t1), t2) | t2 ∈ R(contains(×)) }
R(contains(×)) = { × } ∪ { F(t1, .., tn) | ∃ti ∈ R(contains(×)) }

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Program Optimization 15

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Program Optimization 15

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Program Optimization 15

Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

Sketch-Guided Program Optimization 16

Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

Sketch-Guided Program Optimization 16

Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

Sketch-Guided Program Optimization 16

Evaluation
E-Graph Evolution

Sketch-Guided Program Optimization 17

Evaluation
E-Graph Evolution

Sketch-Guided Program Optimization 17

Evaluation
E-Graph Evolution

Sketch-Guided Program Optimization 17

Evaluation
Sketches vs Full Program

all goals except baseline: sketch guides sketch goal sketch sizes program size
1-3 1 7-12 90-124

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ sketches elide intricate details such as array reshaping patterns

(e.g. split, join, transpose)

Sketch-Guided Program Optimization 18

Conclusion

We propose:
▶ sketches to guide rewriting
▶ sketch-guided equality saturation, a novel, semi-automatic optimization technique

 https://arxiv.org/abs/2111.13040

 thomas.koehler@thok.eu
 thok.eu Thanks!  rise-lang.org

 elevate-lang.org

Sketch-Guided Program Optimization 19

https://arxiv.org/abs/2111.13040
thok.eu
rise-lang.org
elevate-lang.org

Conclusion

We propose:
▶ sketches to guide rewriting
▶ sketch-guided equality saturation, a novel, semi-automatic optimization technique

 https://arxiv.org/abs/2111.13040

 thomas.koehler@thok.eu
 thok.eu Thanks!  rise-lang.org

 elevate-lang.org

Sketch-Guided Program Optimization 19

https://arxiv.org/abs/2111.13040
thok.eu
rise-lang.org
elevate-lang.org

Sketch Definition
S ::= ? | F(S, .., S) | contains(S)

R(?) = T = {F(t1, .., tn)}
R(F(s1, .., sn)) = {F(t1, .., tn) | ti ∈ R(si)}

R(contains(s)) = R(s) ∪ {F(t1, .., tn) | ∃ti ∈ R(contains(s))}

def containsMap(n: NatSketch, f: Sketch): Sketch =
contains(app(map :: ?t → n.?dt → ?y, f))

def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

Sketch-Guided Program Optimization 20

Sketch-Satisfying Equality Saturation

termi-1

sketchisatisfying

e-graphinitialize

apply

extract

costiminimizing
+rulesi

termi

searchi

▶ Terminates as soon as a program satisfying the sketch is found

Sketch-Guided Program Optimization 21

Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)

Sketch-Guided Program Optimization 22

Deciding How to Apply Rewrite Rules

e.g. heuristic search,
 equality saturation, ...

e.g. Halide/TVM schedules,
 Elevate strategies, ...

Sketch-Guided Program Optimization 23

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimization 24

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimization 24

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimization 24

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimization 24

