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The Optimizing Compiler Challenge

domain-specific optimizing compiler(s) high-performance for  target

languages code hardware

image processing —, ’ 11— ﬂ @ some Intel CPU

deep learning g — L T g (L]

other cool domain e e e e e o o other cool processor

some NVIDIA GPU

convenient, hardware agnostic programming

high-performance execution
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Domain-Specific Compilers

domain-specific optimizing compilers high-performance target
languages code hardware

.
image processing —_—> Hallde X g @ some Intel CPU
. (] : some NVIDIA GPU
deep learnin: E—— ﬂ H
i g Rtvm
cee

e o o other cool processor

other cool domain e e e cee

- fixed set of abstractions and optimizations

- need to design and maintain multiple compilers

Optimization decisions are encoded into a schedule
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Schedules for Optimization

Halide algorithm: what to compute

(input(x-1, y) + input(x, y) + input(x+1, y))/3;
(blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

blur_x(x, y)
blur_y(x, y)

Halide schedule: how to optimize

blur_y.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x, 8);

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. “Halide: a language and compiler for optimizing parallelism, locality, and

recomputation in image processing pipelines”. In: Acm Sigplan Notices (2013)
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A Domain-Extensible Compiler

domain-specific SHINE compiler high-performance
languages code

what? how?

| [high-Tevel rewriting Tow-tevel || _— @
™ functional 4©—> functional _’_\

g 1 program \ program ﬁ

coe A ceoe

LN

extensible: ’ data-parallel patterns H rewrite rules ‘

R|SE language

extensible set of abstractions and optimizations

Optimization decisions are encoded via rewriting
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Rewriting Strategies for Optimization

performance engineer

domain-specific
languages

ELEVATE language

& __provides | rewriting
[o] — >|strategy
orchestrates SHINE compiler
what? "‘r‘ how?
high-level rewriting Tow-Tlevel

program

LY

N

_| functional 4<)—> functional || J

program

/N

extensible: ‘ data- parallel patterns H rewrite rules ‘

R|SE language

high-performance
code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.

“Achieving high-performance the functional way: a functional pearl on expressing high-performance

optimizations as rewrite strategies”. In: ICFP (2020)
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Rewriting Strategies vs Schedules

Advantages of rewriting strategies:
» 5 principles: separate concerns, facilitate reuse, enable composition, allow
reasoning, explicit by default

» in practice, rewriting strategies are a competitive alternative to schedules

matrix multiplication and corner detection case studies
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Rewriting Strategies vs Schedules

Advantages of rewriting strategies:
» 5 principles: separate concerns, facilitate reuse, enable composition, allow
reasoning, explicit by default

» in practice, rewriting strategies are a competitive alternative to schedules

matrix multiplication and corner detection case studies

But ... both are difficult to write!
optimization strategy = schedule or rewriting strategy
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Optimization Strategies are Difficult to Write
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Optimization Strategies are Difficult to Write

ornFormecrder(implicit ev: Traversable[Rise]): Strategy[Rise] =
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@scrategy def reorder(L: List[Int]){implicit ev: Traversable[Rise]): Strategy[Rise] = nornForReorder *;  (reorderiec(1) ‘8" topoown[Riss])
81 @strategy def reordermec(l: List[Int])(implicit ev: Traversable[Rise]): strategy[Rise ¢
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o fef freducex(s: strategy[mise]): Strategy[Rise] =
a argument (function(funct ien{ar gunentof (reduceseq. prinitive, bedy(bady(z))))))
o fef stepoown(s: Strategy[Rise]): Strategy[Rise] = freducex(s) <t freduce(s) <+ fmap(s)
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Optimization Strategies are Difficult to Write

> to write: which sequence of transformations lead to an optimized program?

input
program

—>

o}
]

A @ optimized

program

» to read: what is the resulting program? what are the intermediate programs?

input
program

optimization
strategy

@@

N

Transformed program is hidden state that needs to be reasoned about

Sketch-Guided Equality Saturation



Reasoning about Strategies with Program Shapes

5 OHx, Y) = E(x,

schedule |

21

Savvas Sioutas, Sander Stuijk, Twan Basten, Henk Corporaal, and Lou Somers.

halide pipelines on gpus”.

Sketch-Guided Equality Saturation

//function definitions for KWZ grou

K(x, y, ©) = E(x, y) + E(x+1, y) + E(xq 12
w*
Wx, y) = K(x, y,a)*K(x ¥, D F KO, Y, 2+ 2% Hx, ) 3
20 y) = WCx, y-2) + Wk, y=1) + WEx, ¥) + W(x, y+1) + W(x, y+2)
//group schedule

//start with the output of the group
2.compute_root()

//tile the loop

split(x, x.0, x_i, 4)

split(y, yo, y_i, 4)

.reorder(x_i,y_i,x.0,y0);

//assign Vars to threads

.gpu_threads(x_i,y_i)

.gpu_blocks(y_0,y_0);
W.compute_at (Z,x_0)

//optimize the member stage

.reorder(x, y)

//produce Z
<CUDA>gpu_block y_o
<CUDA>gpu_block x_o

allocate __shared__ W[4%8]

//produce W

<CUDA>gpu_thread W.y_i
<CUDA>gpu_thread W.x_i
//produce K

<CUDA>gpu_thread y_i

<Cui/\>gpu read x

gpu_threads(x, y);
Jinested fusion should be allowed
K.compute_at(¥, x)

unroll(c);

() Definitions and Example GPU Schedule of Group KWZ: Compu-
tation of K has been moved at the block (innermost inter-tile level)
of the output Z and W has been interleaved inside the thread level
that computes W.

In: TACO (2020)

(b) Equivalent pseudo-CUDA loop nest
for segment KWZ: Allocation of stage
W is moved to the shared memory. A
single kernel is launched for the whole
segment. Values of K are computed as
needed per pixel of W and stored in
registers until consumption.

optimized
program shape

“Schedule synthesis for

10



Reasoning about Strategies with Program Shapes

Not only found in papers ... but also in talks:

Alex Reinking
result.compute_root() input_16; blur_x;
-tile(x, y, xi, yi, 128, 24) y:

l ¢
.vectorize(x, 32);

x:
Halide: blur_x.compute_root() input_16(x:x+32, y) =(...
A Language for .vectorize(x, 32); \
Fast, Portable input_16.compute_root()
Computation on .vectorize(x, 32);
Images and
Tensors
worevogzs y s 17

)

x:
blur_x(x:x+32, y) =(...
y:

Sketch-Guided Equality Saturation
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Reasoning about Strategies with Program Shapes

In, ELEVATE we define the|fuseoperators strategy transforming
the Harris program (listing into a pipeline over image lines:

map(grayLine > slide(3,1) >
map(Gobelling) B>wslide(3,1) > ma

elided details

The ELEVATE strat-

egy|splitpipeline(32);parallel has the same effect, producing

a program that slides over p + 4 lines of input with step p to
compute chunks of size p in parallel:

The ELEVATE strategy]circularBufferstages
has the same effect, producing a program with the shape:

slide(p+s, p) > mapGlobal(

slide(p+4, p) > mapGlobal( circularBuffer(global, 3,>
map(grayLing) > slide(3,1) > urgulrauffg:ii}obl, 3, Gobellind) &
map( &) o slide(3,1) > map! e.coars1 yLing
(CoarsitylineD

) > join

Thomas Koehler and Michel Steuwer. “Towards a Domain-Extensible Compiler: Optimizing an Image

Processing Pipeline on Mobile CPUs”. In: CGO. 2021
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Sketches to Formalize Program Shapes

sketches = program patterns that leave details unspecified

S ::=7 | FES,.,S | contains(S)

R(?) =T={F(t,..t)}
R(F(st, .., sn)) = {F(t1, ... ta) | ti € R(s;)}
R(contains(s)) = R(s) U {F(ty,.., t,) | At; € R(contains(s))}

Basic sketch grammar (top) and the terms it represents (bottom)

Sketch-Guided Equality Saturation
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Sketches to Formalize Program Shapes

sketches = program patterns that leave details unspecified

S ::=7 | FGS.,S | contains(S)

map(grayLine) » slide(3, 1) >
map(sobellLine) > slide(3, 1) > map(coarsitylLine)

contains(map(?) > slide(3, 1) >
map(?) > slide(3, 1) > map(?))

Example informal program shape (middle) and possible sketch (bottom)

Sketch-Guided Equality Saturation
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Sketches for Optimization

Why not use sketches to specify optimization goals?

» instead of writing optimization strategy, write desired program shape:

input

search for
desired optimized
sketch program

program Fisketeh |

» instead of reading optimization strategy, read program shape:

optimized
program

Sketch-Guided Equality Saturation

€ R(

desired
sketch

)
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Automated Search?

app minimizing ; cos
input | initialize e-graph extract final
term term

Equality Saturation

> An e-graph efficiently represents a large set of equivalent programs.
» The e-graph is grown by applying all possible rewrite rules in a purely additive way.
> After growing the e-graph, the best program found is extracted.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. “Equality saturation: a new approach to
optimization”. In: POPL. 2009

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
“egg: fast and extensible equality saturation”. In: POPL (2021)

Sketch-Guided Equality Saturation
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(ax2)/2

Sketch-Guided Equality Saturation

E-Graph Example

(ax2)/2 —"a
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E-Graph Example

(ax2)/2 —"a

(ax2)/2

Sketch-Guided Equality Saturation

x*x2—x<k1
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E-Graph Example

(ax2)/2 —"a

(ax2)/2

Sketch-Guided Equality Saturation

x*x2—x<k1

(x*y)/z— xx(y/2)

16



(ax2)/2

Sketch-Guided Equality Saturation

E-Graph Example

x*x2—x<k1

(ax2)/2 —"a

(x*y)/z— xx(y/2)

cost = term size

16



Equality Saturation with Sketches

provides
satisfying i sketchf
¥ ]

m minimizing : cost
performance engineer [Rm—
input | initialize e-graph extract final

term term

Questions:

1. How does it work for functional programs like RISE?

> no efficient support for name bindings, rewritten languages are usually first order
2. Does it scale to complex optimizations of realistic programs?

> the search could be too costly

Sketch-Guided Equality Saturation 17



Equality Saturation for Functional Programs

Consider 2 standard A-calculus rules + 2 rules that introduce names on the right:

(Ax. b)e — ble/x] (B-reduction)

Ax. fx— f (n-reduction)

map f (map g arg) — map (Ax. f(gx)) arg (map-fusion)

map (Ax. fgx) — Ay. map f (map (Ax. gx) y) (map-fission)
How can we implement substitution, and name bindings?

Sketch-Guided Equality Saturation
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Equality Saturation for Functional Programs

» We made substitution much more efficient, at the cost of ignoring possibilities.
only substitute using one representative term by equivalence class

> State-of-the-art are efficient but ignore possibilities.

predicate has to hold ¥ terms in equivalence class

» We made name bindings much more efficient using DeBruijn indices.
the goal is to avoid duplicating alpha-equivalent terms

Sketch-Guided Equality Saturation

19



Equality Saturation for Functional Programs

» We made substitution much more efficient, at the cost of ignoring possibilities.
discovering a rewrite goal requiring less than 10 rewrite rule applications:

method | time | RAM | e-nodes | e-classes | found

after <lms | MBs 364 2717 yes

» We made name bindings much more efficient using DeBruijn indices.
discovering a rewrite goal requiring less than 50 rewrite rule applications:

method | time | RAM | e-nodes | e-classes | found

after 100ms | MBs 3K 1K yes

Sketch-Guided Equality Saturation



Matrix Multiplication Case Study

Optimization Time and Memory Consumption

> ELEVATE strategies take ~1s to execute, reproducing 7 optimizations from TVM.

> Equality Saturation with Sketches!:

version sketches | found | time | RAM | rules
baseline 1 yes 0.5s 20 MB 2
blocking 1 yes 1h+ 35GB 5M
+ 5 others 1 no ~1h+ | 60GB+ 7?

ntel Xeon E5-2640 v2

Sketch-Guided Equality Saturation



Matrix Multiplication Case Study

Optimization Time and Memory Consumption

> ELEVATE strategies take ~1s to execute, reproducing 7 optimizations from TVM.

> Equality Saturation with Sketches!:

version sketches | found | time | RAM | rules
baseline 1 yes 0.5s 20 MB 2
blocking 1 yes 1h+ 35GB 5M
+ 5 others 1 no ~1h+ | 60GB+ 7?

What else can we do to improve scaling?

ntel Xeon E5-2640 v2

Sketch-Guided Equality Saturation 20



Matrix Multiplication Case Study

Sketches

iteration order
2D blocking

—_—

(2D tiling) E E

containsMap(m, |

b 1. . X containsMap(n, | for n:
aselline version: containsReduceSeq(k, |
containsAddMul))) /

containsMap(m / 32, |

containsMap(n / 32, [

. . containsReduceSeq(k / &, |
blockmg version (3D) containsReduceSeq(4, l for 4:
containsMap(32, |

containsMap(32, |

containsAddMul)))))) /

Sketch-Guided Equality Saturation
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Matrix Multiplication Case Study

Intermediate Sketches

containsMap(m, | for m:
b 1 . X containsMap(n, | for n:
asellne version: containsReduceSeq(k, |  for k:
containsAddMul))) | oo
containsMap(m / 32, | for m / 32:
i containsMap(32, | for 32:
Intermediate sketch: containsMap(n / 32, | forn / 32:
containsMap(32, / for 32:
how to split the loops? containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(s, / for 4:
containsAddMul)))))) | R
containsMap(m / 32, | for m / 32:
containsMap(n / 32E | for n / 32:
. . containsReduceSeq(k / &, / for k / 4:
blocking version (3D): containsReduceSeq( 4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) /| L x L

Sketch-Guided Equality Saturation



Sketch-Guided Equality Saturation

provides
sketch, sketch,
performance engineer rules, rulesy

l l

» decompose a complex search into a series of simpler searches

» additional sketches specify intermediate goals

Sketch-Guided Equality Saturation

input search, searchy
term f------- _—
term

final
term

23



Decomposition of each version into logical steps. A sketch is defined for each logical step.

Sketch-Guided Equality Saturation

Matrix Multiplication Case Study

Intermediate Sketches

version sketches

blocking split + reorder;
vectorization | split + reorder; + lower;
loop-perm split + reorder, + lower,

array-packing

split + reorder,

+ store + lowers

cache-blocks

split + reorder;

+ store + lowery

parallel

split + reorder,

+ store + lowers

24



Matrix Multiplication Case Study

Optimization Time and Memory Consumption

» ELEVATE strategies take ~1s to execute, reproducing 7 optimizations from TVM.

» Equality Saturation with Sketches?:

version sketches | found | time RAM | rules
baseline 1 yes 0.5s | 20 MB 2
1h+ 35GB 5M

blocking 1 yes

» Sketch-Guided Equality Saturation®:

version sketches | found | time RAM rules
baseline 1 yes 0.5s 20 MB 2
blocking 2 yes 7s 0.3 GB 11K
+ 5 others 3-4 yes <7s | <0.5GB | <11K

2Intel Xeon E5-2640 v2

3 AMD Ryzen 5 PRO 2500U
25
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Conclusion

We propose:
» sketches for program optimization, alternative to optimization strategies
» practical techniques to support efficient equality saturation for lambda calculi

» sketch-guided equality saturation, a novel, semi-automatic optimization technique

Sketch-Guided Equality Saturation
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Conclusion

We propose:
» sketches for program optimization, alternative to optimization strategies
» practical techniques to support efficient equality saturation for lambda calculi

» sketch-guided equality saturation, a novel, semi-automatic optimization technique

% thomas.koehler@thok.eu Thanks! Q rise-lang.org
Q@ thok.eu We are open to collaboration! Q@ elevate-lang.org

paper: https://arxiv.org/abs/2111.13040
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Deciding How to Apply Rewrite Rules

Fully automated search?

e.g. heuristic search,
equality saturation, ...

This is fully
@ automated! ("y
E The search takes
forever.. (1

Why is the performance
so bad in this case? (1

I wish I could have control
over the optimizations! (1

Sketch-Guided Equality Saturation

Manually written recipe?

e.g. Halide/TVM schedules,
Elevate strategies, ...

or

ﬁl I have full control! (’_\||

This was more difficult to
write than | expected! (1

How can | generalize this
recipe to other cases? (1

Guided search!

or

o]

I can combine control and
automation! "y (3

27



