
Optimizing Processing Pipelines with a Rewrite-Based
Domain-Extensible Compiler

Thomas KœhleR Michel SteuweR

Languages, Systems, and Data Seminar — November 2021



Domain-Agnostic Compilers

Some compilers are domain-agnostic:
+ generic program abstractions and optimizations
+ compile programs from any domain (turing complete)
- no automation of domain-specific optimizations
- manual optimization takes months and risks introducing bugs

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 1



Domain-Specific Compilers

Some compilers are domain-specific:
+ convenient programming
+ high-performance

Halide algorithm: what to compute

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

Halide schedule: how to optimize

blur_y.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);

blur_x.compute_at(blur_y, x).vectorize(x, 8);

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 2



Domain-Specific Compilers

Some compilers are domain-specific:
- fixed set of abstractions and optimizations
- lack of flexibility and extensibility

https://github.com/halide/Halide/issues/5055

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 3

https://github.com/halide/Halide/issues/5055


Domain-Extensible Compilers

Compilers should be domain-extensible:
+ extensible set of abstractions and optimizations

- competitive with domain-specific compilers?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 4



Domain-Extensible Compilers

Compilers should be domain-extensible:
+ extensible set of abstractions and optimizations

- competitive with domain-specific compilers?

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 4



Domain-Extensible Compilers

Compilers should be domain-extensible:
+ extensible set of abstractions and optimizations
- competitive with domain-specific compilers?

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 4



Is RISE Competitive with Domain-Specific Compilers?

1.00

0.32

re
la

ti
v
e
 r

u
n
ti

m
e

p
e
rf

o
rm

a
n
ce

Halide

Rise important image processing pipeline optimizations are missing

[Koehler and Steuwer 2021 “Towards a Domain-Extensible Compiler: Optimizing an Image Processing
Pipeline on Mobile CPUs”]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 5



Is RISE Competitive with Domain-Specific Compilers?

1.00
1.32

0.32

re
la

ti
v
e
 r

u
n
ti

m
e

p
e
rf

o
rm

a
n
ce

Halide
extension

Rise

Rise (extended)

6 well-known image processing pipeline optimizations can be

encoded as compositions of RISE rewrite rules

[Koehler and Steuwer 2021 “Towards a Domain-Extensible Compiler: Optimizing an Image Processing
Pipeline on Mobile CPUs”]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 5



Orchestrating Compositions of Rewrite Rules

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

optimization
strategy

performance engineer

language

language

provides

orchestrates

[Hagedorn et al. 2020 “Achieving high-performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies”]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 6



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ map(×) ▷ reduce(+, 0) Rewriting

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ map(×) ▷ reduce(+, 0) Rewriting

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ map(×) ▷ reduce(+, 0) Rewriting

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Harris Case Study

The Harris corner (and edge) detector is a well established image processing pipeline

How de we represent these operators in RISE?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 8



Harris Case Study

High-level point-wise operator

def ×2D(a, b: [n] [m] f32): [n] [m] f32 =
zip2d(a, b) ▷ map2d(×)

High-level convolution operator

def +3×3: [n + 2] [m + 2] f32→ [n] [m] f32 =
slide2d(3, 1, 3, 1) ▷ map2d(fun w. reduce(+, 0 join(w)))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 9



Harris Case Study

High-level Harris operator

def harris(RGB: [3] [n + 4] [m + 4] f32): [n] [m] f32 =
def I = grayscale(RGB)
def Ix = Sx(I)
def Iy = Sy(I)
def Ixx = ×2D(Ix, Ix)
def Ixy = ×2D(Ix, Iy)
def Iyy = ×2D(Iy, Iy)
def Sxx = +3×3(Ixx)
def Sxy = +3×3(Ixy)
def Syy = +3×3(Iyy)
coarsity(Sxx, Sxy, Syy, 0.04)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 10



Reference Optimizations

CPU schedule for Harris
from the Halide GitHub repository

const int vec = natural_vector_size<float>();
output.split(y, y, yi, 32).parallel(y)

.vectorize(x, vec);
gray.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Ix.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Iy.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Ix.compute_with(Iy, x);

Simplified internal representation of lowered code
let t1226 = ((output.extent.1 + 31)/32)
parallel (output.s0.y.y, 0, t1226) {
allocate gray[float32 * (output.extent.0 + 4) * 8]
allocate Iy[float32 * t1247 * 4]
allocate Ix[float32 * t1247 * 4]
for (output.s0.y.yi, 0, 32) {
for (gray.s0.y, gray.s0.y.min_2, gray.s0.y.loop_extent) {
for (gray.s0.x.x, 0, t1265) {
gray[ramp(((gray.s0.x.x*4) + t1268), 1, 4)] = [...] }}

for (Iy.s0.fused.y, Iy.s0.y.min_2, t1269) {
for (Iy.s0.x.fused.x, 0, t1251) {
Iy[ramp(((Iy.s0.x.fused.x*4) + t1275), 1, 4)] = [...]
Ix[ramp(((Iy.s0.x.fused.x*4) + t1275), 1, 4)] = [...] }}

for (output.s0.x.x, 0, t1250) {
output[ramp(((output.s0.x.x*4) + t1281), 1, 4)] = [...] }}

free gray
free Iy
free Ix }

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 11



Reference Optimizations

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 12



Reference Optimizations
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbufVersion =
fuseOperators;
splitPipeline(32); parallel;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
sequentialLines;
usePrivateMemory; unrollReductions

Harris after applying cbufVersion

slide(32+4, 32) ▷ mapGlobal(
circularBuffer(global, 3, grayLine) ▷
circularBuffer(global, 3, sobelLine) ▷
mapSeq(coarsityLine)

) ▷ join

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 13



Optimizations beyond Halide

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 14



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1



=


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1

 =


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1

 =


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1

 =


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Experimental Evaluation
(4-core) (4-core) (2-core) (4-core)

▶ All compilers outperform the OpenCV library: RISE by up to 16×
▶ RISE improved by up to 4.5×
▶ RISE cbuf is roughly on par with Halide
▶ RISE cbuf+rrot is faster than Halide by up to 40%

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 16



Summary
Harris Operator case study on ARM CPUs

▶ We reproduced an optimized Halide schedule by defining compositional ELEVATE
optimization strategies; by extending and re-using RISE patterns.

▶ The achieved performance is on par with the highly optimized Halide compiler,
which is specifically built for image processing pipelines.

▶ We reached higher performance through additional optimizations that cannot be
expressed in a Halide schedule, showing the benefit of compiler extensibility.

But, ELEVATE optimization strategies are difficult to write!

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 17



Summary
Harris Operator case study on ARM CPUs

▶ We reproduced an optimized Halide schedule by defining compositional ELEVATE
optimization strategies; by extending and re-using RISE patterns.

▶ The achieved performance is on par with the highly optimized Halide compiler,
which is specifically built for image processing pipelines.

▶ We reached higher performance through additional optimizations that cannot be
expressed in a Halide schedule, showing the benefit of compiler extensibility.

But, ELEVATE optimization strategies are difficult to write!

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 17



Deciding how to Apply Rewrite Rules

e.g. heuristic search,
 equality saturation, ...

e.g. Halide/TVM schedules,
 Elevate strategies, ...

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 18



Guided Equality Saturation via Sketching

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

performance engineer

language

program
sketch

program

best candidates

cost model

N times

provides

equality saturation

guided search

+

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 19



Optimizing Matrix Multiplication with Sketching
map (fun aRow. map (fun bCol. dot aRow bCol) transpose b) a

−→∗

join (map (map join) (map transpose
map (map fun x2.
reduceSeq (fun x3. fun x4.

reduceSeq (fun x5. fun x6.
map (map (fun x7. (fst x7) +

(fst (snd x7)) × (snd (snd x7)))
(map (fun x7. zip (fst x7) (snd x7)) (zip x5 x6)))

(transpose (map transpose
(snd (unzip (map unzip map (fun x5.
zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (fun x3. generate (fun x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose
(map (map (fun x2. map (map (zip x2)

(split 32 (transpose b)))))
split 32 a))))))

containsMap(m /^ 32,
containsMap(n /^ 32,
containsReduceSeq(k /^ 4,

containsReduceSeq(4,
containsMap(32,

containsMap(32, ?))))))

▶ 0 intermediate sketch: not
found after minutes X

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 20



Optimizing Matrix Multiplication with Sketching
map (fun aRow. map (fun bCol. dot aRow bCol) transpose b) a

−→∗

join (map (map join) (map transpose
map (map fun x2.
reduceSeq (fun x3. fun x4.

reduceSeq (fun x5. fun x6.
map (map (fun x7. (fst x7) +

(fst (snd x7)) × (snd (snd x7)))
(map (fun x7. zip (fst x7) (snd x7)) (zip x5 x6)))

(transpose (map transpose
(snd (unzip (map unzip map (fun x5.
zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (fun x3. generate (fun x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose
(map (map (fun x2. map (map (zip x2)

(split 32 (transpose b)))))
split 32 a))))))

containsMap(m /^ 32,
containsMap(32,
containsMap(n /^ 32,
containsMap(32,
containsReduceSeq(k /^ 4,
containsReduceSeq(4, ?))))))

containsMap(m /^ 32,
containsMap(n /^ 32,
containsReduceSeq(k /^ 4,
containsReduceSeq(4,
containsMap(32,
containsMap(32, ?))))))

▶ 1 intermediate sketch: found
in seconds ✓

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 21



Conclusion

▶ We encode 6 well-known image processing pipeline optimizations as compositions
of rewrite rules.

▶ We present guided equality saturation via sketching, to offer novel trade-offs
between precise control and full automation of optimizations.

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 22



Conclusion

▶ We encode 6 well-known image processing pipeline optimizations as compositions
of rewrite rules.

▶ We present guided equality saturation via sketching, to offer novel trade-offs
between precise control and full automation of optimizations.

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 22



Equality Saturation

Which rewrite rule should be applied when, and where?

Explore all possibilities
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]

[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

+ No need to decide which rewrite to apply next,
Decide which program variant you want in the end.

- Need to efficiently represent and rewrite many programs.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 23



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

Congruence invariant: a = b =⇒ f(a) = f(b)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

How does it work for functional programs?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation for RISE

(𝜆x. b)e −→ b[e/x] (𝛽-reduction)
𝜆x. f x −→ f if x not free in f (𝜂-reduction)

map f (map g arg) −→ map (𝜆x. f (g x)) arg (map-fusion)
map (𝜆x. f gx) −→ 𝜆y. map f (map (𝜆x. gx) y) if x not free in f (map-fission)

How can we implement substitution, predicates and name bindings?
▶ State-of-the-art is very inefficient, trivial optimizations are our of reach.
▶ We made substitution order of magnitudes more efficient using a practical

approximation.
▶ We made name bindings order of magnitudes more efficient using DeBruijn indices.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 25


