Optimizing Processing Pipelines with a Rewrite-Based
Domain-Extensible Compiler

Thomas K&HLER Michel STEUWER
A University
of Glasgow

Huawei CSI Paris Seminar — December 2021

¥ THE UNIVERSITY
N of EDINBURGH

Domain-Agnostic Compilers

Some compilers are domain-agnostic:
generic program abstractions and optimizations
compile programs from any domain (turing complete)
- no automation of domain-specific optimizations

- manual optimization takes months and risks introducing bugs

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Domain-Specific Compilers

Some compilers are domain-specific: Halide

convenient programming s tvm

high-performance

Halide algorithm: what to compute

(input(x-1, y) + input(x, y) + input(x+1, y))/3;
(blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

blur_x(x, y)
blur_y(x, y)

Halide schedule: how to optimize

blur_y.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x, 8);

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Domain-Specific Compilers

Some compilers are domain-specific: Halide
- fixed set of abstractions and optimizations s tvm

- lack of flexibility and extensibility

Halide Development Roadmap #5055
abadams opened this issue on Jun 19 - 44 comments
« How do we make Halide easier to use for researchers wanting to cannibalize if, extend it, or compare to it?

» How do we make Halide more useful on current and upcoming hardware?
« How do we make Halide more useful for new types of application?

https://github.com/halide/Halide/issues/5055

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

https://github.com/halide/Halide/issues/5055

Domain-Extensible Compilers

Compilers should be domain-extensible:

extensible set of abstractions and optimizations

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Domain-Extensible Compilers

Compilers should be domain-extensible:

extensible set of abstractions and optimizations

domain-specific

SHINE compiler

hardware

languages

what?

high-level
functional
program

rewriting

+

\
g/J

AN

how?

Tlow-level

functional ||

program

A

targets

extensible: ’ data-parallel patterns H rewrite rules ‘

R'SE language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Domain-Extensible Compilers

Compilers should be domain-extensible:

extensible set of abstractions and optimizations

- competitive with domain-specific compilers?

domain-specific

SHINE compiler

hardware

languages

what?

high-level
functional
program

rewriting

+

\
g/J

AN

how?

Tlow-level

functional ||

program

A

targets

extensible: ’ data-parallel patterns H rewrite rules ‘

R'SE language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Is RISE Competitive with Domain-Specific Compilers?

important image processing pipeline optimizations are missing

performance

relative runtime

[Kecehler and Steuwer, CGO 2021, Towards a Domain-Extensible Compiler: Optimizing an Image Processing
Pipeline on Mobile CPUs]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Is RISE Competitive with Domain-Specific Compilers?

()

co extension

£ | 1.32
B

[Hatice A o
. 6 well-known image processing pipeline optimizations can be
Rise

encoded as compositions of RISE rewrite rules
. Rise (extended)

[Kecehler and Steuwer, CGO 2021, Towards a Domain-Extensible Compiler: Optimizing an Image Processing
Pipeline on Mobile CPUs]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Orchestrating Compositions of Rewrite Rules

performance engineer ELEVATE language
/O provides optimization

@E —— | strategy
domain-specific orchestrates SHINE compiler hardware
languages targets

what? V,[, how?
p rewritin
high-level 9 low-Tlevel

_| functional 4'(7)—» functional [~

program \ program >

LN ~
coe
\ A
\ /TN
\ / N\

\ /

extensible: | data-parallel patterns H rewrite rules

R'SE language

[Hagedorn et al, ICFP 2020, Achieving high-performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Compilation Example
dot product

High-level RISE program ELEVATE optimization strategy

def dot(a, b) = zip(a, b) > map(x) > reduce(+, 0) strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) > reduce(g, init)
+ reduceSeq(fun (acc, x). g(acc, f(x)), init)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Compilation Example
dot product

High-level RISE program ELEVATE optimization strategy

def dot(a, b) = zip(a, b) > map(x) > reduce(+, 0) strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) > reduce(g, init)
+ reduceSeq(fun (acc, x). g(acc, f(x)), init)

—

|zip(a, b) > map(x) > reduce(+, o)| Rewriting

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Compilation Example
dot product

High-level RISE program ELEVATE optimization strategy

def dot(a, b) = zip(a, b) > map(x) > reduce(+, 0) strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) > reduce(g, init)
+ reduceSeq(fun (acc, x). g(acc, f(x)), init)

—

zip(a, b)|> map(x) > reduce(+, o) Rewriting

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Compilation Example
dot product

High-level RISE program ELEVATE optimization strategy

def dot(a, b) = zip(a, b) > map(x) > reduce(+, 0) strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) > reduce(g, init)
+ reduceSeq(fun (acc, x). g(acc, f(x)), init)

—

zip(a, b) > |map(x) > reduce(+, o) Rewriting

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Compilation Example
dot product

High-level RISE program ELEVATE optimization strategy

def dot(a, b) = zip(a, b) > map(x) > reduce(+, 0) strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) > reduce(g, init)
+ reduceSeq(fun (acc, x). g(acc, f(x)), init)

—

zip(a, b) > reduceSeq(fun acc, x. acc + fst(x) x snd(x), o)

Low-Level
RISE Program

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Compilation Example
dot product

High-level RISE program ELEVATE optimization strategy

def dot(a, b) = zip(a, b) > map(x) > reduce(+, 0) strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) > reduce(g, init)
+ reduceSeq(fun (acc, x). g(acc, f(x)), init)

—

zip(a, b) > reduceSeq(fun acc, x. acc + fst(x) x snd(x), o)

l

void dotSeqC(float* out, int n, float* a, float* b) {

Low-Level
RISE Program

float acc;

acc = 0.0f;

for (int i = 0; i < n; i++) { Low-Level
acc = acc + (a[il] = b[il); C Code

out[e] = acc;

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Harris Case Study

point-wise operators
)) \

Y

v I
3x3 convolution operators

The Harris corner (and edge) detector is a well established image processing pipeline

How de we represent these operators in RISE?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Harris Case Study

High-level point-wise operator High-level convolution operator
def xyp(a, b: [n][m]f32): [n][m]f32 = def +3x3: [n+2] [m+2]f32 — [n] [m]f32 =
zip2d(a, b) > map2d(x) slide2d(3, 1, 3, 1) > map2d(fun w. reduce(+, o join(w)))
a

HE? OUtPHF input

output
! 2 " t@ —]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Harris Case Study

High-level Harris operator

point-wise operators
’ \ \

def harris(RGB: [3][n+4][m+4]f32): [n][m]f32 = 7 R Teal
def I = grayscale(RGB) g ' S
def I = Sy(I) N .
def I, = 5,(I) |
def Ly = Xop(L, L) A
def Ly = Xop(lx, L)
def Iy = xap(ly, Iy)
def Syx = +3x3 (L)
def Sy = +3><3(Ixy)
def Sy, = +3x3(Iyy)

VY
coarsity(Sxx, Sxy, Syy, ©.04)

' i
3x3 convolution operators

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Reference Optimizations

CPU schedule for Harris
from the Halide GitHub repository

const int vec = natural_vector_size<float>();

output.split(y, y, yi, 32).parallel(y)
.vectorize(x, vec);

gray.store_at(output, y).compute_at(output, yi)
.vectorize(x, vec);

Ix.store_at(output, y).compute_at(output, yi)
.vectorize(x, vec);

Iy.store_at(output, y).compute_at(output, yi)
.vectorize(x, vec);

Ix.compute_with(Iy, x);

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Simplified internal representation of lowered code

let t1226 = ((output.extent.1 + 31)/32)
parallel (output.se.y.y, o, t1226) {
allocate gray[float32 * (output.extent.o + 4) * 8]
allocate Iy[float32 * t1247 * 4]
allocate Ix[float32 * t1247 * 4]
for (output.se.y.yi, o, 32) {
for (gray.se.y, gray.se.y.min_2, gray.se.y.loop_extent) {
for (gray.so.x.x, @, t1265) {
gray[ramp(((gray.se.x.x*4) + t1268), 1, 4)] = [...] }}
for (Iy.se.fused.y, Iy.se.y.min_2, t1269) {
for (Iy.se.x.fused.x, ©, ti251) {
Ty[ramp(((Iy.se.x.fused.x*4) + t1275), 1, 4)] [...]
Ix[ramp(((Iy.se.x.fused.x*4) + t1275), 1, 4)] [...1}}
for (output.se.x.x, o, ti250) {
output[ramp(((output.se.x.x*4) + t1281), 1, 4)] = [...]1 }}
free gray
free Iy
free Ix }

11

Reference Optimizations

input: RGB

implicit circular buffering

L store_at(output, y).compute_at(output, yi)

output.split(y, y, yi, 32).parallel(y)

output

®

(+) G

3 &6
|| padding memory __ TN T
: | A T
(] I
L
T T (T EeEe
X .vectorize(x, vec)

X

X .vectorize(x, vec)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

.vectorize(x, vec)

12

Reference Optimizations
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbufVersion =
fuseOperators;
splitPipeline(32); parallel;
vectorizeReductions(vec);
harrisIxwWithIy;
circularBufferStages;
sequentiallines;
usePrivateMemory; unrollReductions

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Harris after applying cbufversion

slide(32+4, 32) > mapGlobal(
circularBuffer(global, 3, graylLine) »
circularBuffer(global, 3, sobellLine)
mapSeq(coarsitylLine)

) > join

13

Optimizations beyond Halide

!
!@@ ;®®

o f
&5 7 I S R o W 411
R (I S Y (i al
Na 5 1N I [I
Y : T
3 (T : EEEE]SEEE
X : X
&\ée
AN : e e A)
o g OO |
S l S nnnn annnlmav S
5 . N EnaninnEn R,
§ registers it gregisters
uf. : S
2 Ty o [
x-1 X x-1 X

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 14

Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumelines;
usePrivateMemory; unrollReductions

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Typical 2D Convolution

nbhV > map(slide(3,1)) > transpose > map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

-1 0 1
-2 0
-1 0 1

15

Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumelines;
usePrivateMemory; unrollReductions

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Typical 2D Convolution

nbhV > map(slide(3,1)) > transpose > map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

-1 0 1] [1
-2 0 2| =|2[[-1 0 1]
-1 0 1 |1

nbhV > map(slide(3,1)) > transpose > map(fun nbh2d.
nbh2d > transpose > map(dot(wV)) > dot(wH))

15

Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumelines;
usePrivateMemory; unrollReductions

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Typical 2D Convolution

nbhV > map(slide(3,1)) > transpose > map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

-1 0 1] [1
-2 0 2| =|2[[-1 0 1]
-1 0 1 |1

nbhV > map(slide(3,1)) > transpose > map(fun nbh2d.
nbh2d > transpose > map(dot(wV)) > dot(wH))

nbhV > transpose > map(dot(wV))
> slide(3,1) > map(dot(wH))

15

Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumelines;
usePrivateMemory; unrollReductions

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Typical 2D Convolution

nbhV > map(slide(3,1)) > transpose > map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

-1 0 1] [1
-2 0 2| =|2[[-1 0 1]
-1 0 1 |1

nbhV > map(slide(3,1)) > transpose > map(fun nbh2d.
nbh2d > transpose > map(dot(wV)) > dot(wH))

nbhV > transpose > map(dot(wV))
> slide(3,1) > map(dot(wH))

nbhV > transpose > map(dot(wV))
> rotateValues(private, 3) > mapSeq(dot(wH))

15

Experimental Evaluation

q,'g Cortex A7 (4-core) Cortex A15 (4-core) Cortex A53 (2-core) Cortex A73 (4-core)
29
&9 30 60
gwn
S o 40
to 20 1536x2560
ag 4256x2832
OEJ'§ 10 20
Q
= ®©
28 04--. J-.
2g SR S 1 §
. (2
S S E8ES &£ s °Kx S
R & R &
& Q-_\c?'

All compilers outperform the OpenCV library: RISE by up to 16X
RISE improved by up to 4.5%

RISE cbuf is roughly on par with Halide

RISE cbuf+rrot is faster than Halide by up to 40%

vV v. vy

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 16

Harris Case Study on ARM CPUs

Summary

» We reproduced an optimized Halide schedule by defining compositional ELEVATE
optimization strategies; by extending and re-using RISE patterns.

» We reached higher performance through additional optimizations that cannot be
expressed in a Halide schedule, showing the benefit of compiler extensibility.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

17

Harris Case Study on ARM CPUs

Summary

» We reproduced an optimized Halide schedule by defining compositional ELEVATE
optimization strategies; by extending and re-using RISE patterns.

» We reached higher performance through additional optimizations that cannot be
expressed in a Halide schedule, showing the benefit of compiler extensibility.

But, ELEVATE optimization strategies are difficult to write!

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

17

Optimization Strategies are Difficult to Write

ELEVATE optimization strategy

strategy cbufVersion =
fuseOperators;
splitPipeline(32); parallel;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
sequentiallLines;
usePrivateMemory; unrollReductions

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Behind the scenes:
» 400 lines of ELEVATE strategies
» hard to write: 1 month of work

» hard to read, hard to reuse

18

Optimization Strategies are Difficult to Write

ELEVATE optimization strategy

strategy cbufversion = Behind the scenes:
fuseOperatorSé y
splitPipeline(32); parallel; . .
vgctorin)eReductiorgsL()vec); ' » 400 lines of ELEVATE strategles
harrisIxWithIy;
circularBufferstages; » hard to write: 1 month of work

sequentiallLines;
usePrivateMemory; unrollReductions

» hard to read, hard to reuse

Can we automatically apply rewrite rules instead of writing strategies?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

18

Exploring Many Ways to Apply Rewrite Rules

apply i rules minimizing i cost
input | initialize extract final
term term

Equality Saturation
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]
[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

» An e-graph efficiently represents a large set of equivalent programs.
» All possible rewrite rules are applied in a purely additive way, growing the e-graph.

» After growing the e-graph, the best program found is extracted.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Exploring Many Ways to Apply Rewrite Rules

apply i rules minimizing i cost
input | initialize extract final
term term

Equality Saturation
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]
[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

No need to decide which rewrite to apply next.
Decide which program you want in the end.

- Does not scale to our Harris case study

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Exploring Many Ways to Apply Rewrite Rules

apply i rules minimizing i cost
input | initialize extract final
term term

Equality Saturation
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]
[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

Can we make a trade-off between precise control and full automation?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 19

Declaring Rewrite Goals using Sketches

Harris after applying cbufversion

slide(32+4, 32) o mapGlobal(» When designing optimizations, it is

circularBuffer(global, 3, grayline) > : :
circularBuffer(global, 3, Sobelline) o> useful to think about the desired shape
) ';a';f,ei?,(“’amml"e) of the optimized program.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 20

Declaring Rewrite Goals using Sketches

Harris after applying cbufversion

slide(32+4, 32) > mapGlobal(» When designing optimizations, it is
circularBuffer(global, 3, grayline) > : :
circularBuffer(global, 3, Sobelline) o useful to think about the desired shape
) ';a';f,ﬁ',‘,(“’m”y“"e) of the optimized program.
» Sketches are program patterns that
Harris sketch corresponding to cbufversion capture this intuition while leaving
contains(? o slide(32+4. 32) > mapGlobal(details unspecified using program holes
contains(? o .
circularBuffer(global, 3, containsGrayLine) > (7) and other constructs (contams).
circularBuffer(global, 3, containsSobellLine) > .
| mevsea(containsCoarsityine)) » Sketches can be used to guide searches

such as equality saturation.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 20

provides

o

performance engineer

Sketch-Guided Equality Saturation

sketch,

cost,

rules,

searchy

satisfying

minimizing i costy

final

input extract
term term
domain sym‘(vrvﬁ‘c SHINE compiler.—" hardiiare
languages targets
what? . ~How?
. .. rewritin,
high-level o, —~ g " | low-level .
| functional |—)}*—|functional |-
» \7 ~+— .
program * program
e e ,'/ L)

extensible: | data-parallel patterns H rewrite rules

R|SE language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

21

provides

o

performance engineer

Sketch-Guided Equality Saturation

sketch,

cost,

input
term

rules,

searchy

initiali extract
initialize e-graph X

final

term

languages

S

what?"

high-level

_| functional

program

.. rewriting .-

N
\7§

extensible: | data-parallel patterns H rewrite rules

R|SE language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

[Il
HINE compiler.—" hdrdware
S targets
L Hiow?
low-level —
functional ||
program i
A

21

Matrix Multiplication Case Study

Optimization Time and Memory Consumption

version sketches found time RAM rules
: baseline 1 yes 0.5s 20 MB 2
Single-Sketch!:
& blocking 1 yes 1h+ 35GB 5M
+ 5 others 1 no ~1h+ 60GB+ 7?7
version sketches found time RAM rules
. baseline 1 yes 0.5s 20 MB 2
Multi-Sketch?:
blocking 2 yes 7s 0.3 GB 11K
+5 others 3-4 yes <7s | <0.5GB | <11K

Hntel Xeon E5-2640 v2
2AMD Ryzen 5 PRO 2500U

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

22

Conclusion

> We encode 6 well-known image processing pipeline optimizations as compositions
of rewrite rules.

» We propose sketch-guided equality saturation to offer novel trade-offs between
precise control and full automation of optimizations.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

23

Conclusion

> We encode 6 well-known image processing pipeline optimizations as compositions
of rewrite rules.

» We propose sketch-guided equality saturation to offer novel trade-offs between
precise control and full automation of optimizations.

% thomas.koehler@thok.eu Thanks! Q rise-lang.org
Q@ thok.eu We are open to collaboration! Q elevate-lang.org

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

23

Deciding How to Apply Rewrite Rules

Fully automated search?

e.g. heuristic search,
equality saturation, ...

This is fully
@ automated! ("
The search takes
forever.. (1

Why is the performance
so bad in this case? (1

I wish I could have control
over the optimizations! (1

Manually written recipe?

e.g. Halide/TVM schedules,
Elevate strategies, ...

.
\Flhave full control! (E||

This was more difficult to
write than | expected! (1

How can | generalize this
recipe to other cases? (1

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

Guided search!

or

=]

I can combine control and
automation! ("3 (3

24

E-Graphs

(a*2)/2 —"a

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

25

E-Graphs

(ax2)/2—"a

(ax2)/2 xx2 —x<k1

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

25

E-Graphs

(ax2)/2—"a

(a*2)/2 x%2 — x <1 (x*y)/z— x*(y/2)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

25

E-Graphs

(ax2)/2—"a

(a*2)/2 x%2 — x <1 (x*y)/z— x*(y/2)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

25

E-Graphs

(ax2)/2—"a

Congruence invariant: a=b = fla) = f(b)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

25

E-Graphs

(ax2)/2—"a

How does it work for functional programs?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler

25

Equality Saturation for RISE

(Ax. b)e — ble/x] (B-reduction)

A fx— f (n-reduction)

map f (map g arg) — map (Ax. f(gx)) arg (map-fusion)

map (Ax. fgx) — Ay. map f (map (1x. gx) y) (map-fission)
How can we implement substitution, and name bindings?

» State-of-the-art is very inefficient, trivial optimizations are our of reach.

» We made substitution order of magnitudes more efficient using a practical
approximation.

» We made name bindings order of magnitudes more efficient using DeBruijn indices.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 26

