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Background

Internships
▶ Optical flow computing optimisation on GPU

2017, 2 months, Laboratoire d’Informatique de Paris 6, France

supervisor: Lionel Lacassagne

▶ Efficient object tracking on heterogeneous and parallel
architectures
2018, 6 months, Laboratoire d’Informatique de Paris 6, France

supervisors: Lionel Lacassagne, Emmanuel Chailloux
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Embedded Hardware

NVIDIA Jetson boards ∼5-15W
Tegra K1, X1, X2 (ARM CPU + NVIDIA GPU)

Power consumption comparison
Lenovo A485 ∼10-50W
Intel i7 3370 ∼80W-140W
GeForce GTX 970 ∼145W
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Optical Flow: application

The Meteorix project
▶ a nanosatellite to observe meteors from space
▶ limited resources, constrained environment
▶ communication device on an university tower

▶ low satellite ↔ ground bandwidth
▶ real-time meteor detection: ∼ 30 fps
▶ power consumption: ∼ 1 Watt

CubeSat structure ©NASA Meteor in space ©NASA On the university roof
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Optical Flow: application

Processing pipeline example
▶ a meteor observed from the International Space Station

provided by the METEOR project of the Chiba Institute of Technology

Optical Flow
▶ apparent motion of the pixels between two images
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Optical Flow: objectives

My Objectives
▶ GPU implementation and optimisation handwritten CUDA

▶ can we respect the constraints? ∼ 30 fps/W

Why GPUs?
▶ compare to CPUs and FPGAs
▶ promising power efficiency
▶ fitting for image processing
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Optical Flow: algorithm

Pyramidal Horn Schunck algorithm
▶ iterative computation of the optical flow in each pixel
▶ compute a coarse flow on a small resolution
▶ progressively scale up to bigger resolutions and refine

Processing a bigger resolution
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Optical Flow: implementation

First results
▶ Tegra X1, 1280 × 720 pixels, 4 levels, 6 iterations
▶ power consumption estimate: ∼ 10Watts

precision time (ms) fps fps/Watt
f32 (single) 33.92 29.5 2.95
f16 (half) 20.88 47.9 4.79

Optimisation
▶ focus on improving execution times
▶ lower the GPU frequency to reduce consumption
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Optical Flow: optimisation

Fusing the average and the local flow computation

Producer-consumer model

precision original time fused time local speedup
f32 2.42 ms 1.39 ms ×1.74
f16 1.42 ms 0.95 ms ×1.49
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Optical Flow: optimisation

On-the-fly upscaling

Producer-consumer model

precision original time fused time local speedup
f32 2.75 ms 1.79 ms ×1.53
f16 1.67 ms 1.16 ms ×1.44
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Optical Flow: optimisation

▶ Single Instruction Multiple Threads: minimize divergence
▶ memory transfers: aligned, coalesced, locality
▶ cover latencies with Instruction Level Parallelism
▶ tune block sizes
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Optical Flow: results

Overall improvement: ×5.5

precision time (ms) fps speedup fps/W
f32 33.92 → 9.90 101 ×3.4 10
f16 20.88 → 6.18 162 ×3.4 16

Constraints still not respected
▶ not the complete processing pipeline
▶ not in space, not radiation-hardened
▶ review the objectives, performance and quality constraints
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Experimental Measures

▶ comparing CPU and GPU efficiency
non-pyramidal Horn-Schunck algorithm, embedded boards

▶ published to COMPAS (French) and DASIP
▶ Tegra X2 GPU: 4× faster 3× less energy
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Object Tracking: problematic

Deploying object tracking by covariance matching

▶ focus on embedded systems with integrated CPU/GPU
▶ real time, low energy consumption, good quality
▶ use the hardware efficiently
▶ development tools and abstractions
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Object Tracking: algorithm

Covariance Matrix
▶ describe an object using various features
▶ compact, discriminant and robust

▶ a set of features, F
▶ a sample region
▶ statistical measure of the relations within F
▶ similarity metric between matrices

Tune features and algorithm specifically for the application
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Object Tracking: algorithm

Object tracking from a motionless camera
selected processing pipeline

▶ movement detection
Σ∆ Sigma-Delta

▶ noise filtering
mathematical morphology

▶ connected components and bounding boxes
Light Speed Labeling

▶ description through covariance matrices
position, intensity, texture→ 7 features

▶ tracking by greedy matching between frames
Jensen-Bregman LogDet divergence
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Object Tracking: algorithm

Processing the video stmarc from the Urban Tracker dataset
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Object Tracking: low-level implementation

Tegra X2
Camera and display integration

camera (argus capture)
processing (CUDA/C++) display (OpenGL/X11)

texture mappingEGL stream

fill the camera pipeline
maximise throughput despite latency

integration code: ∼1 200 C++ lines
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Object Tracking: low-level implementation

Computing covariance matrices

need to compute means, can use sums:

cov(X, Y) = E[(X − E[X])(Y − E[Y])] = E[XY] − E[X]E[Y]

generating GPU code from elementary stencils:
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Object Tracking: low-level implementation

Results
average range

labels 10.0 0 – 51
time (ms) 8.97 6.09 – 47.43
fps 111 21 – 166

Measures on the video (1280x720 pixels)

Issues
▶ maintain real-time processing adapt quality to quantity, establish priorities

▶ algorithmic alternatives to explore conditional Σ∆, optical flow

▶ more optimisations to explore
▶ not portable
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Object Tracking: efficient abstractions

Simplify development to enable improvements
▶ Adapt application prototyping and flexibility

▶ Optimise efficiency, explore the implementation space

▶ Port execute on multiple platforms

▶ Verify correct behavior, hold some properties

C/CUDA/OpenCL are not suited, lack of productivity
▶ not portable, verbose, time consuming and error-prone
▶ not composable without performance loss manual operator fusing

▶ troublesome semantics, compiler lacks freedom and knowledge
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Object Tracking: efficient abstractions

My rough idea
▶ high-level and low-level pattern graphs combining elementary

functions

Inspiration
▶ algorithmic skeletons map, zip, reduce

▶ Structured Parallel Programming Intel TBB, Cilk Plus, Intel ArBB

▶ existing graphs and dataflow representations TensorFlow, OpenVX
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Object Tracking: efficient abstractions

Example: Σ∆ movement detection
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Object Tracking: efficient abstractions
Complete system scheduling
same idea, predictable, low execution overhead
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Object Tracking: efficient abstractions
Complete system scheduling
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Object Tracking: efficient abstractions

Other approaches
▶ StarPU runtime system for heterogeneous architectures

+ task graph, data-aware scheduling
- runtime overhead, requires specialised task implementations

▶ Halide fast image processing, embedded in C++

+ separate algorithm and scheduling, used in production
- domain specific, mostly manual scheduling
implicit internals, hard to troubleshoot

▶ Lift high-level fonctional language, rewrite system

+ explicit rewrite rules and low-level expressions
- not yet practical to use, rewriting takes time and setup
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PhD Research

▶ simplify development of applications adapt, optimise, port, verify

▶ Lift approach elegant and promising
▶ not yet practical to use
▶ PhD offer on the Lift website

Practical development of efficient and portable image processing
applications in Lift

Study applications to find limitations
blur, corner detection, optical flow, object tracking, etc
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Research Questions

Focus
▶ How do we design a faster, more autonomous rewriting

system?
▶ How do we design a performance model serving this goal?
▶ How beneficial is hardware and domain knowledge?

But also
▶ How should we integrate with non-processing tasks?
▶ How will we deploy the implementations on the architecture?
▶ How is the development workflow affected?
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Thanks!

Thomas Kœhler
 bastacyclop.gitlab.io

 t.koehler.1@research.gla.ac.uk

 lift-project.org


