
Development of efficient image processing
applications

Thomas Kœhler

supervised by Michel Steuwer and Phil Trinder

intra-systems seminar — january 2019



Background

Master of Software Science and Technology
2016–2018, Sorbonne Université, Paris, France

Development of efficient image processing applications 1



Background

Internships
▶ Optical flow computing optimisation on GPU

2017, 2 months, Laboratoire d’Informatique de Paris 6, France

supervisor: Lionel Lacassagne

▶ Efficient object tracking on heterogeneous and parallel
architectures
2018, 6 months, Laboratoire d’Informatique de Paris 6, France

supervisors: Lionel Lacassagne, Emmanuel Chailloux

Development of efficient image processing applications 2



Embedded Hardware

NVIDIA Jetson boards ∼5-15W
Tegra K1, X1, X2 (ARM CPU + NVIDIA GPU)

Power consumption comparison
Lenovo A485 ∼10-50W
Intel i7 3370 ∼80W-140W
GeForce GTX 970 ∼145W

Development of efficient image processing applications 3



Optical Flow: application

The Meteorix project
▶ a nanosatellite to observe meteors from space
▶ limited resources, constrained environment
▶ communication device on an university tower

▶ low satellite ↔ ground bandwidth
▶ real-time meteor detection: ∼ 30 fps
▶ power consumption: ∼ 1 Watt

CubeSat structure ©NASA Meteor in space ©NASA On the university roof

Development of efficient image processing applications 4



Optical Flow: application

Processing pipeline example
▶ a meteor observed from the International Space Station

provided by the METEOR project of the Chiba Institute of Technology

Optical Flow
▶ apparent motion of the pixels between two images

Development of efficient image processing applications 5



Optical Flow: objectives

My Objectives
▶ GPU implementation and optimisation handwritten CUDA

▶ can we respect the constraints? ∼ 30 fps/W

Why GPUs?
▶ compare to CPUs and FPGAs
▶ promising power efficiency
▶ fitting for image processing

Development of efficient image processing applications 6



Optical Flow: algorithm

Pyramidal Horn Schunck algorithm
▶ iterative computation of the optical flow in each pixel
▶ compute a coarse flow on a small resolution
▶ progressively scale up to bigger resolutions and refine

Processing a bigger resolution

Development of efficient image processing applications 7



Optical Flow: implementation

First results
▶ Tegra X1, 1280 × 720 pixels, 4 levels, 6 iterations
▶ power consumption estimate: ∼ 10Watts

precision time (ms) fps fps/Watt
f32 (single) 33.92 29.5 2.95
f16 (half) 20.88 47.9 4.79

Optimisation
▶ focus on improving execution times
▶ lower the GPU frequency to reduce consumption

Development of efficient image processing applications 8



Optical Flow: optimisation

Fusing the average and the local flow computation

Producer-consumer model

precision original time fused time local speedup
f32 2.42 ms 1.39 ms ×1.74
f16 1.42 ms 0.95 ms ×1.49

Development of efficient image processing applications 9



Optical Flow: optimisation

On-the-fly upscaling

Producer-consumer model

precision original time fused time local speedup
f32 2.75 ms 1.79 ms ×1.53
f16 1.67 ms 1.16 ms ×1.44

Development of efficient image processing applications 10



Optical Flow: optimisation

▶ Single Instruction Multiple Threads: minimize divergence
▶ memory transfers: aligned, coalesced, locality
▶ cover latencies with Instruction Level Parallelism
▶ tune block sizes

Development of efficient image processing applications 11



Optical Flow: results

Overall improvement: ×5.5

precision time (ms) fps speedup fps/W
f32 33.92 → 9.90 101 ×3.4 10
f16 20.88 → 6.18 162 ×3.4 16

Constraints still not respected
▶ not the complete processing pipeline
▶ not in space, not radiation-hardened
▶ review the objectives, performance and quality constraints

Development of efficient image processing applications 12



Experimental Measures

▶ comparing CPU and GPU efficiency
non-pyramidal Horn-Schunck algorithm, embedded boards

▶ published to COMPAS (French) and DASIP
▶ Tegra X2 GPU: 4× faster 3× less energy

0

5

10

15

20

25

30

35

40

40 60 80 100 120 140 160 180 200

TX2 GPU opt F16

TX2 GPU opt F32

TX1 GPU opt F16

TX1 GPU opt F32

TX2 GPU base F32

TK1 GPU opt F32
T

TX1 GPU base F32

energy per pixel (nJ)

ti
m

e
 p

e
r 

p
ix

e
l 
(n

s)

TX2 CPU opt

Pareto fronts for the best processors and versions, one point per frequency

Development of efficient image processing applications 13



Object Tracking: problematic

Deploying object tracking by covariance matching

▶ focus on embedded systems with integrated CPU/GPU
▶ real time, low energy consumption, good quality
▶ use the hardware efficiently
▶ development tools and abstractions

Development of efficient image processing applications 14



Object Tracking: algorithm

Covariance Matrix
▶ describe an object using various features
▶ compact, discriminant and robust

▶ a set of features, F
▶ a sample region
▶ statistical measure of the relations within F
▶ similarity metric between matrices

Tune features and algorithm specifically for the application

Development of efficient image processing applications 15



Object Tracking: algorithm

Object tracking from a motionless camera
selected processing pipeline

▶ movement detection
Σ∆ Sigma-Delta

▶ noise filtering
mathematical morphology

▶ connected components and bounding boxes
Light Speed Labeling

▶ description through covariance matrices
position, intensity, texture→ 7 features

▶ tracking by greedy matching between frames
Jensen-Bregman LogDet divergence

Development of efficient image processing applications 16



Object Tracking: algorithm

Processing the video stmarc from the Urban Tracker dataset

Development of efficient image processing applications 17



Object Tracking: low-level implementation

Tegra X2
Camera and display integration

camera (argus capture)
processing (CUDA/C++) display (OpenGL/X11)

texture mappingEGL stream

fill the camera pipeline
maximise throughput despite latency

integration code: ∼1 200 C++ lines

Development of efficient image processing applications 18



Object Tracking: low-level implementation

Computing covariance matrices

need to compute means, can use sums:

cov(X, Y) = E[(X − E[X])(Y − E[Y])] = E[XY] − E[X]E[Y]

generating GPU code from elementary stencils:

Development of efficient image processing applications 19



Object Tracking: low-level implementation

Results
average range

labels 10.0 0 – 51
time (ms) 8.97 6.09 – 47.43
fps 111 21 – 166

Measures on the video (1280x720 pixels)

Issues
▶ maintain real-time processing adapt quality to quantity, establish priorities

▶ algorithmic alternatives to explore conditional Σ∆, optical flow

▶ more optimisations to explore
▶ not portable

Development of efficient image processing applications 20



Object Tracking: efficient abstractions

Simplify development to enable improvements
▶ Adapt application prototyping and flexibility

▶ Optimise efficiency, explore the implementation space

▶ Port execute on multiple platforms

▶ Verify correct behavior, hold some properties

C/CUDA/OpenCL are not suited, lack of productivity
▶ not portable, verbose, time consuming and error-prone
▶ not composable without performance loss manual operator fusing

▶ troublesome semantics, compiler lacks freedom and knowledge

Development of efficient image processing applications 21



Object Tracking: efficient abstractions

My rough idea
▶ high-level and low-level pattern graphs combining elementary

functions

Inspiration
▶ algorithmic skeletons map, zip, reduce

▶ Structured Parallel Programming Intel TBB, Cilk Plus, Intel ArBB

▶ existing graphs and dataflow representations TensorFlow, OpenVX

Development of efficient image processing applications 22



Object Tracking: efficient abstractions

Example: Σ∆ movement detection

Development of efficient image processing applications 23



Object Tracking: efficient abstractions
Complete system scheduling
same idea, predictable, low execution overhead

Development of efficient image processing applications 24



Object Tracking: efficient abstractions
Complete system scheduling

Development of efficient image processing applications 25



Object Tracking: efficient abstractions

Other approaches
▶ StarPU runtime system for heterogeneous architectures

+ task graph, data-aware scheduling
- runtime overhead, requires specialised task implementations

▶ Halide fast image processing, embedded in C++

+ separate algorithm and scheduling, used in production
- domain specific, mostly manual scheduling
implicit internals, hard to troubleshoot

▶ Lift high-level fonctional language, rewrite system

+ explicit rewrite rules and low-level expressions
- not yet practical to use, rewriting takes time and setup

Development of efficient image processing applications 26



PhD Research

▶ simplify development of applications adapt, optimise, port, verify

▶ Lift approach elegant and promising
▶ not yet practical to use
▶ PhD offer on the Lift website

Practical development of efficient and portable image processing
applications in Lift

Study applications to find limitations
blur, corner detection, optical flow, object tracking, etc

Development of efficient image processing applications 27



Research Questions

Focus
▶ How do we design a faster, more autonomous rewriting

system?
▶ How do we design a performance model serving this goal?
▶ How beneficial is hardware and domain knowledge?

But also
▶ How should we integrate with non-processing tasks?
▶ How will we deploy the implementations on the architecture?
▶ How is the development workflow affected?

Development of efficient image processing applications 28



Thanks!

Thomas Kœhler
 bastacyclop.gitlab.io

 t.koehler.1@research.gla.ac.uk

 lift-project.org


