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1 Context
Computing frequently involves approximating exact arithmetic using finite precision number repre-

sentations: e.g. floating-point numbers and fixed-point arithmetic. However, achieving the desired

numerical precision in finite precision programs while maximizing performance is challenging due

to overflow and roundoff errors.

In the optimizing compiler community, floating points are often treated as reals (e.g. gcc’s

-ffast-math), enabling useful transformations (𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧, 𝑥/10.0 = 0.1 ∗ 𝑥 , etc),

but ignoring accuracy problems.

In the program analysis community, tools were developed to analyze and improve numerical

software [1, 2]. Many tools tune the precision of arithmetic variables and operations in a given

program (mixed-precision tuning), potentially rewriting arithmetic expressions [3, 4, 5]. Beyond

straight-line code, Rosa [6] and Precisa [7] can analyse rounding errors over certain kinds of condi-

tionals and loops. Analysing rounding errors of programs written over arrays has only been made

possible recently in the Daisy DS2L [8]. The analysis of Daisy DS2L scales by avoiding to unroll ar-

ray operations and leveraging high-level information from its functional array input language that

features high-level patterns over arrays (e.g. map, reduce). However, the functional array code of

Daisy DS2L is currently executed without applying state-of-the-art compiler optimizations.

The goal of this internship is to demonstrate for the first time that it is possible to perform both

state-of-the-art compiler optimizations and numerical analyses on array code, in order to produce

fast programs with guaranteed error bounds. To achieve this, the Daisy DS2L rounding error analysis

will be combined with recent work on the Shine compiler [9, 10]. The Shine compiler takes as input

programs defined in the functional array language called Rise, and outputs imperative code (e.g. C,

OpenCL, or CUDA). Optimizations are not hard-coded, but expressed as Rise rewrite rules that can

be applied more or less automatically (via rewriting strategies [11] or equality saturation [12]).

2 Objectives
We envision the following steps for the internship:

1. Implement translations between the Daisy DS2L and Rise languages. While the Daisy DS2L

and Rise languages are different, they are both functional array languages based on similar

patterns, and the translation appears feasible in many cases.

2. Use these translations to first analyse input programs using Daisy DS2L before optimizing

them using Rise rewrite rules that preserve floating-point behaviour and generating C code

using Shine. Evaluate the performance of the generated C code on the Daisy DS2L bench-

marks, and experimentally validate the computed error bounds.

3. Ideally, explore the use of Rise rewrite rules that do not preserve floating-point behaviour.

For example, by applying them before the Daisy DS2L analysis in the previously process.

Floating-point sums [13], reductions [14] and scans [15] would be interesting benchmarks as

their parallelisation requires associativity properties found in reals but not in floating-points.
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3 Required and Acquired Skills
The intern should come with:

• solid programming skills, familiarity with imperative and functional paradigms

• interest in (or experience with) analysis, compilation and optimization tools

• interest in (or experience with) functional array languages, map/reduce patterns

• willingness to learn (or knowledge of) Scala and C

The intern is expected to acquire:

• experience in basic academic skills: reviewing literature, conducting novel research, collabo-

rating with other researchers, presenting research and communicating ideas

• knowledge in floating-point analysis, term rewriting and code generation

• the ability to combine theory (numerical analysis) with practice (fast imperative code)

4 Practical Aspects
The internship can either take place in Uppsala (Sweden), or in Strasbourg (France), and a brief

visit of the other location could be organized during the internship. If you are interested, send us

an e-mail with a short statement of interest, questions you might have, the desired start date and

duration of your internship (4-6 months), as well as a 1 page CV and your Master transcripts. If the

internship goes well, there is potential to pursue a PhD in similar topics.
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