
Master Internship Proposal
Optimizing Programs with Sketch-Guided Polyhedral Compilation

Location Team Inria CAMUS, ICube Laboratory, Strasbourg (Illkirch campus)

or Team Inria CASH, LIP Laboratory, Lyon, France

Advisors Thomas Kœhler, CNRS

Christophe Alias, Inria

1 Context
Recent breakthroughs in domains such as image processing, physics simulation or machine learning

require massive computing power. Optimizing programs is critical to make them faster, and reduce

their memory and energy consumption. However, optimizing programs is challenging.

Modern compilers automatically apply many optimizations, but are too limited, often failing

to achieve satisfying performance [1]. General-purpose compilers like Clang or GCC for C/C++

mostly fail to apply whole-program optimizations across function calls and loops. Domain-specific

compilers such as Halide [2] for image processing and TVM [3] for machine learning enable more

aggressive optimizations, but are restricted in their input and optimizations. Polyhedral compilers

[4, 5] are effective across application domains, but, when fully automatic, rely on fragile heuristics.

As a result, skilled programmers often optimize libraries (e.g. BLAS or MKL for linear algebra)

and applications by hand [6], but this is time consuming and risks introducing bugs. Rather than

trying to replace programmers with elusively smart compilers, we aim to combine the strengths of

manual and automatic approaches through guided (i.e. semi-automatic) optimization techniques.

Prior work in guided optimization often relies on step-by-step recipes: transformation scripts [7],

scheduling APIs [2], rewriting strategies [8], or tactics [9]. The problem with optimization recipes

is that they require programmers to think about how to achieve their optimizations in a framework

that is likely unfamiliar (e.g. intermediate languages, polyhedrons, rewrite rules). Therefore, tools

where built to alleviate the difficulty of writing optimization recipes. For example, Clint allows ma-

nipulating polyhedral schedules through interactive 2D diagrams [10], and interactive optimization

assistants help programmers in writing recipes [11, 12]. Instead of programmers focusing on the

how, we would like programmers to focus on declaratively describing the what.
Recent work introduces guided equality saturation [13], a semi-automatic term rewriting tech-

nique that scales by allowing human insight to guide the process at key points. Guides are concise

and incomplete program sketches describing what key optimization steps look like, while an auto-

matic search based on equality saturation instantiates the sketch and infers the how. This work was

identified as a promising direction for future research by the MIT PL Review [14]. However, guided

equality saturation is only applicable to optimizing functional programs using rewrite rules.

The goal of this internship is to enable sketch-guided optimization of imperative programs using

polyhedral compilation techniques.

2 Objectives
• Design a language enabling programmers to write sketches that are satisfied by a family of C

programs. This language should enable programmers to express key optimization insights and

constraints, in a style similar to informal programs written on a piece of paper, or whiteboard.

1

https://team.inria.fr/camus/
https://icube.unistra.fr
https://www.ens-lyon.fr/LIP/CASH/
https://www.ens-lyon.fr/LIP/
https://thok.eu
https://perso.ens-lyon.fr/christophe.alias/


• Implement or extend a polyhedral compiler such that it only generates programs that satisfy a

given sketch. As regular polyhedral compilers, it should also take as input an initial program,

preserve its semantics, and optimize some objective function. The initial program semantics

and the objective function will enable resolving ambiguities in the user-provided sketch.

• Use this tool to reproduce well-known optimizations on benchmarks from PolyBench, Halide,

TVM, or other sources. Ideally, demonstrate that sketch-guidance enables generating faster

code than fully automatic polyhedral compilers thanks to programmer insight.

3 Required and Acquired Skills
The intern should come with:

• solid imperative programming skills

• interest in (or experience with) compilation and optimization

• willingness to learn (or knowledge of) C and other programming languages

The intern is expected to acquire:

• experience in basic academic skills: reviewing literature, conducting novel research, collabo-

rating with other researchers, presenting research and communicating ideas

• greater understanding of compilers, program optimization and high performance applications

• the ability to combine theory (polyhedral model) with practice (high performance code)

4 Practical Aspects
If you are interested, send us an e-mail with a short statement of interest, questions you might have,

the desired start date and duration of your internship (4-6 months), as well as a 1 page CV and your

Master transcripts. If the internship goes well, there is potential to pursue a PhD in similar topics.

References
[1] Paul Barham and Michael Isard. “Machine Learning Systems are Stuck in a Rut”.

In: Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS 2019, Bertinoro,
Italy, May 13-15, 2019. ACM, 2019, pp. 177–183.

url: https://doi.org/10.1145/3317550.3321441.

[2] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman P. Amarasinghe,

and Frédo Durand. “Decoupling algorithms from schedules for easy optimization of image

processing pipelines”. In: ACM Trans. Graph. 31.4 (2012), 32:1–32:12.

url: https://doi.org/10.1145/2185520.2185528.

[3] Tianqi Chen et al.

“TVM: An Automated End-to-End Optimizing Compiler for Deep Learning”.

In: 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,
Carlsbad, CA, USA, October 8-10, 2018. Ed. by Andrea C. Arpaci-Dusseau and Geoff Voelker.

USENIX Association, 2018, pp. 578–594.

url: https://www.usenix.org/conference/osdi18/presentation/chen.

2

mailto:thomas.koehler@inria.fr,christophe.alias@ens-lyon.fr
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/2185520.2185528
https://www.usenix.org/conference/osdi18/presentation/chen


[4] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and

Ponnuswamy Sadayappan.

“A practical automatic polyhedral parallelizer and locality optimizer”. In: Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Implementation. 2008,

pp. 101–113.

[5] Arun Thangamani, Vincent Loechner, and Stéphane Genaud.

“A Survey of General-purpose Polyhedral Compilers”.

In: ACM Trans. Archit. Code Optim. (June 2024). Just Accepted. issn: 1544-3566.

url: https://doi.org/10.1145/3674735.

[6] Thomas M. Evans, Andrew R. Siegel, Erik W. Draeger, Jack Deslippe, Marianne M. Francois,

Timothy C. Germann, William E. Hart, and Daniel F. Martin. “A survey of software

implementations used by application codes in the Exascale Computing Project”.

In: Int. J. High Perform. Comput. Appl. 36.1 (2022), pp. 5–12.

url: https://doi.org/10.1177/10943420211028940.

[7] Lénaıc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul.

“Opening polyhedral compiler’s black box”.

In: Proceedings of the 2016 International Symposium on Code Generation and Optimization,
CGO 2016, Barcelona, Spain, March 12-18, 2016.

Ed. by Björn Franke, Youfeng Wu, and Fabrice Rastello. ACM, 2016, pp. 128–138.

url: https://doi.org/10.1145/2854038.2854048.

[8] Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin, Sergei Gorlatch, and

Michel Steuwer. “Achieving High Performance the Functional Way: Expressing

High-Performance Optimizations as Rewrite Strategies”.

In: Communications of the ACM 66.3 (2023), pp. 89–97.

[9] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley.

“Verified Tensor-Program Optimization via High-Level Scheduling Rewrites”.

In: Proc. ACM Program. Lang. 6.POPL (Jan. 2022). url: https://doi.org/10.1145/3498717.

[10] Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul.

“Visual program manipulation in the polyhedral model”.

In: ACM Transactions on Architecture and Code Optimization (TACO) 15.1 (2018), pp. 1–25.

[11] Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal.

“LoopOpt: Declarative Transformations Made Easy”.

In: SCOPES ’21: 24th International Workshop on Software and Compilers for Embedded
Systems, Eindhoven, The Netherlands, November 1 - 2, 2021. Ed. by Sander Stuijk. ACM, 2021,

pp. 11–16. url: https://doi.org/10.1145/3493229.3493301.

[12] Yuka Ikarashi, Jonathan Ragan-Kelley, Tsukasa Fukusato, Jun Kato, and Takeo Igarashi.

“Guided Optimization for Image Processing Pipelines”.

In: IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2021, St
Louis, MO, USA, October 10-13, 2021.

Ed. by Kyle J. Harms, Jácome Cunha, Steve Oney, and Caitlin Kelleher. IEEE, 2021, pp. 1–5.

url: https://doi.org/10.1109/VL/HCC51201.2021.9576341.

[13] Thomas Koehler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and

Michel Steuwer. “Guided Equality Saturation”.

In: Proc. ACM Program. Lang. 8.POPL (2024), pp. 1727–1758.

url: https://doi.org/10.1145/3632900.

[14] url: https://plr.csail.mit.edu/.

3

https://doi.org/10.1145/3674735
https://doi.org/10.1177/10943420211028940
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3493229.3493301
https://doi.org/10.1109/VL/HCC51201.2021.9576341
https://doi.org/10.1145/3632900
https://plr.csail.mit.edu/

	Context
	Objectives
	Required and Acquired Skills
	Practical Aspects

