
Master Internship Proposal
Exploring Accuracy and Performance Trade-offs in Functional Array

Programs

Location Department of Information Technology, Uppsala, Sweden

or Team Inria CAMUS, ICube Laboratory, Strasbourg (Illkirch campus), France

Advisors Eva Darulova, Uppsala University

Thomas Kœhler, CNRS

1 Context
Program optimization is crucial in high performance computing domains such as image processing,

physics simulation, and artificial intelligence. An optimized program is faster, consumes less mem-

ory and energy. Concretely, optimization allows to process higher resolution images, to increase

the realism of simulations, and to reduce the carbon footprint of artificial intelligence. However,

program optimization is a difficult task that is made even more challenging by the fact that pro-

grams frequently approximate exact arithmetic using finite precision number representations: e.g.

floating-point numbers and fixed-point arithmetic.

On one hand, many high-performance optimizing compilers simply ignore finite-precision round-

ing errors, treat them as real values [1, 2] and optimize purely for performance. On the other hand,

typical general-purpose compilers will not apply optimizations that may affect floating-point results.

For example, gcc/clang’s O3 optimization level will not re-arrange computations based on associa-

tivity; optimizations affecting floating-point behaviour must be explicitly enabled via the fast-math

flag and the developer is responsible for any resulting issues.

A few tools explore trade-offs between performance and accuracy, but are fairly limited. Some

optimize arithmetic expressions [3, 4, 5], select between explicitly programmed algorithm alterna-

tives [6], or dynamically skip loop iterations [7]. Except for tools exclusively targeting reconfig-

urable hardware [8], there is no tool today that explores performance and accuracy trade-offs when

applying high-performance optimizations to programs with loops and arrays.

The goal of this internship is to remedy this situation by building an empirical design space

exploration tool. To achieve this, the Shine compiler [2, 9] will be used to compile an input program

with many different optimizations. The resulting programs will be evaluated empirically in terms

of performance and accuracy. The Shine compiler takes as input programs defined in the functional

array language called Rise, and outputs imperative code (e.g. C, OpenCL, or CUDA).

2 Objectives
We envision the following steps for the internship:

1. Design a process to generate many programs in the design space. This will be facilitated

by the fact that Rise optimizations are not hard-coded, but expressed as rewrite rules whose

application can be explored using various rewriting techniques.

2. Experimentally evaluate the performance and accuracy of the generated C code on simple

benchmarks. Accuracy will be evaluated using so-called shadow execution that executes a

floating-point program in a higher precision, e.g. using the MPFR library, side-by-side [10] and

estimates the rounding error as the difference in final results. Analyse the results and produce

pareto fronts to draw conclusions on the relationship between performance and accuracy.

1

https://www.uu.se/en/department/information-technology
https://team.inria.fr/camus/
https://icube.unistra.fr
https://malyzajko.github.io/
https://thok.eu


3. Ideally, tackle benchmarks that require adding new Rise rewrite rules, for example to make use

of different algorithms or tune the precision of individual variables and operations. Floating-

point sums [11], reductions [12] and scans [13] would be interesting benchmarks as their

parallelisation requires associativity properties found in reals but not in floating-points.

3 Required and Acquired Skills
The intern should come with:

• solid programming skills, familiarity with imperative and functional paradigms

• interest in (or experience with) design space exploration, compilation and optimization tools

• willingness to learn (or knowledge of) Scala and C

The intern is expected to acquire:

• experience in basic academic skills: reviewing literature, conducting novel research, collabo-

rating with other researchers, presenting research and communicating ideas

• knowledge in floating-point accuracy, term rewriting and code generation

4 Practical Aspects
The internship can either take place in Uppsala (Sweden), or in Strasbourg (France), and a brief

visit of the other location could be organized during the internship. If you are interested, send us

an e-mail with a short statement of interest, questions you might have, the desired start date and

duration of your internship (4-6 months), as well as a 1 page CV and your Master transcripts. If the

internship goes well, there is potential to pursue a PhD in similar topics.

References
[1] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman P. Amarasinghe,

and Frédo Durand. “Decoupling algorithms from schedules for easy optimization of image

processing pipelines”. In: ACM Trans. Graph. 31.4 (2012), 32:1–32:12.

url: https://doi.org/10.1145/2185520.2185528.

[2] Michel Steuwer, Thomas Kœhler, Bastian Köpcke, and Federico Pizzuti.

RISE & Shine: Language-Oriented Compiler Design. 2022. arXiv: 2201.03611 [cs.PL].

[3] Nasrine Damouche and Matthieu Martel.

“On the Impact of Numerical Accuracy Optimization on General Performances of Programs”.

In: 5th International Conference on Control, Decision and Information Technologies, CoDIT
2018, Thessaloniki, Greece, April 10-13, 2018. IEEE, 2018, pp. 333–340.

url: https://doi.org/10.1109/CoDIT.2018.8394897.

[4] Brett Saiki, Oliver Flatt, Chandrakana Nandi, Pavel Panchekha, and Zachary Tatlock.

“Combining Precision Tuning and Rewriting”. In: 28th IEEE Symposium on Computer
Arithmetic, ARITH 2021, Lyngby, Denmark, June 14-16, 2021. IEEE, 2021, pp. 1–8.

url: https://doi.org/10.1109/ARITH51176.2021.00013.

2

mailto:eva.darulova@it.uu.se,thomas.koehler@inria.fr
mailto:eva.darulova@it.uu.se,thomas.koehler@inria.fr
https://doi.org/10.1145/2185520.2185528
https://arxiv.org/abs/2201.03611
https://doi.org/10.1109/CoDIT.2018.8394897
https://doi.org/10.1109/ARITH51176.2021.00013


[5] Eva Darulova, Einar Horn, and Saksham Sharma.

“Sound mixed-precision optimization with rewriting”.

In: Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems,
ICCPS 2018, Porto, Portugal, April 11-13, 2018.

Ed. by Chris Gill, Bruno Sinopoli, Xue Liu, and Paulo Tabuada. IEEE, 2018, pp. 208–219.

url: https://doi.org/10.1109/ICCPS.2018.00028.

[6] Jason Ansel, Yee Lok Wong, Cy P. Chan, Marek Olszewski, Alan Edelman, and

Saman P. Amarasinghe.

“Language and compiler support for auto-tuning variable-accuracy algorithms”.

In: Proceedings of the CGO 2011, The 9th International Symposium on Code Generation and
Optimization, Chamonix, France, April 2-6, 2011. IEEE Computer Society, 2011, pp. 85–96.

url: https://doi.org/10.1109/CGO.2011.5764677.

[7] Maxime Schmitt, Philippe Helluy, and Cédric Bastoul.

“Automatic adaptive approximation for stencil computations”.

In: Proceedings of the 28th International Conference on Compiler Construction, CC 2019,
Washington, DC, USA, February 16-17, 2019. Ed. by José Nelson Amaral and Milind Kulkarni.

ACM, 2019, pp. 170–181. url: https://doi.org/10.1145/3302516.3307348.

[8] Xitong Gao, John Wickerson, and George A. Constantinides. “Automatically Optimizing the

Latency, Area, and Accuracy of C Programs for High-Level Synthesis”.

In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey, CA, USA, February 21-23, 2016.

Ed. by Deming Chen and Jonathan W. Greene. ACM, 2016, pp. 234–243.

url: https://doi.org/10.1145/2847263.2847282.

[9] Thomas Kœhler.

“A domain-extensible compiler with controllable automation of optimisations”.

In: arXiv preprint arXiv:2212.12035 (2022).

[10] Sangeeta Chowdhary and Santosh Nagarakatte.

“Fast shadow execution for debugging numerical errors using error free transformations”.

In: Proc. ACM Program. Lang. 6.OOPSLA2 (2022), pp. 1845–1872.

url: https://doi.org/10.1145/3563353.

[11] url: https://orlp.net/blog/taming-float-sums/.

[12] Nikolay M. Evstigneev, Oleg I. Ryabkov, A. N. Bocharov, V. P. Petrovskiy, and

I. O. Teplyakov. “Compensated summation and dot product algorithms for floating-point

vectors on parallel architectures: Error bounds, implementation and application in the

Krylov subspace methods”. In: J. Comput. Appl. Math. 414 (2022), p. 114434.

url: https://doi.org/10.1016/j.cam.2022.114434.

[13] Ivo Gabe de Wolff, David P. van Balen, Gabriele K. Keller, and Trevor L. McDonell.

“Zero-Overhead Parallel Scans for Multi-Core CPUs”.

In: Proceedings of the 15th International Workshop on Programming Models and Applications
for Multicores and Manycores, PMAM 2024, Edinburgh, United Kingdom, 3 March 2024.

ACM, 2024, pp. 52–61. url: https://doi.org/10.1145/3649169.3649248.

3

https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1145/3302516.3307348
https://doi.org/10.1145/2847263.2847282
https://doi.org/10.1145/3563353
https://orlp.net/blog/taming-float-sums/
https://doi.org/10.1016/j.cam.2022.114434
https://doi.org/10.1145/3649169.3649248

	Context
	Objectives
	Required and Acquired Skills
	Practical Aspects

