
Machine Learning Guided Equality Saturation
Nicole Heinimann

heinimann@tu-berlin.de
Technische Universität Berlin

Germany

Thomas Kœhler
thomas.koehler@cnrs.fr

ICube Lab, CNRS, Université de
Strasbourg
France

Michel Steuwer
michel.steuwer@tu-berlin.de
Technische Universität Berlin

Germany

Abstract
Equality saturation has successfully been applied in many
domains. Yet, scaling issues hold back its success in even
more applications. The underlying e-graph data structure
can grow rapidly quickly consuming all available resources.
Guided Equality Saturation [4] proposed a solution by

breaking challenging rewrite problems into a sequence of
equality saturations. This enables the technique to scale
further and solve complex rewrite problems far out of reach
of standard equality saturation. However, this technique
relies on the human experts to provide insights in the form
of guides that describe when to stop one equality saturation
and start the next.
In this talk, we are going to present our ongoing efforts

to reduce the reliance on human experts. In our Machine
Learning Guided Equality Saturation, the ambition is to auto-
matically generate guides using a machine learning model
to enable the scaling of Equality Saturation to more complex
applications. We report on the current state of our research
and the machine learning model we are developing.

1 Introduction
E-Graphs are a clever data structure powering Equality Sat-
uration, an equational rewrite approach, that forms the ba-
sis of optimizing compilers and automated proof searches.
Equality saturation overcomes downsides of naive greedy
rewrite systems. Still, e-graphs face scaling issues when deal-
ing with real-world problems where just a single application
of a rule can easily double the size of the e-graph, leading
to a runaway scenario that can quickly consume all avail-
able memory. One source of the scaling issues are explosive
rewrites that interact in unfortunate ways resulting in rapid
growth of the e-graph. Simply removing those rewrites rules
is not possible without losing the ability to prove a large
number of equalities or massively restricting optimizations.
Multiple strategies have been proposed to mitigate the

scaling issue. One possible approach consists of replacing
more general explosive rewrites with more domain-specific
rules that only apply to a subset of terms. Another approach
uses a careful rule scheduler that applies explosive rewrite
rules as sparingly as possible. Changing the e-graph itself
to be more efficient and resilient against blow-up in certain
settings has also been explored [5]. However, while these
techniques improve efficiency, none provides a principled
solution to address the scaling issue.

2 Expert Guided Equality Saturation
To address the scalability issue without restricting expressiv-
ity or requiring more resources, another approach is Guided
Equality Saturation [4] which allows users to supply guides
𝐺1 . . . 𝐺𝑛 . In contrast to standard equality saturation, Guided
Equality Saturation does not attempt to reach the goal (or
target) term 𝑇 (either explicitly or implicitly specified by a
concrete term in the proof scenario or by a cost function in
the compilation scenario) from the start term 𝑆 directly in
one big equality saturation. Rather, the process is split up
into multiple stages. This corresponds to the shift from the
first to the second stage in Figure 1, rectangle 2).

Equality saturation is performed until the first of the sup-
plied guides 𝐺1 is found. A new start term 𝑆 ′ that matches
the guide𝐺1 is extracted. The old e-graph is then discarded, a
fresh e-graph is initialized with 𝑆 ′ and equality saturation is
performed, now trying to reach 𝐺𝑛+1 or 𝑇 if no more guides
exist. By chaining together these smaller, more tractable
equality saturations, a problem unreachable with only one

Start


Term

Guide


1

Guide


2

Guide


N

Goal


Term
...

Start


Term

Goal


Term

Start


Term

Guide


1

Guide


2

Guide


N

Goal


Term
...

2)

1)

3)

X

Figure 1. Extending the Scalability of Equality Saturation. A
goal term not reachable in a single naive equality saturation
1) becomes feasible if an expert provides multiple guides
2), shifting some of the burden to the expert. In a Machine
Learning Guided Equality Saturation 3), these guides are pro-
vided by a machine learning model, not requiring human
experts.

https://orcid.org/0000-0001-9506-3538
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5048-0741


EGRAPHS, 20205, Seoul, South Korea Nicole Heinimann, Thomas Kœhler, and Michel Steuwer

equality saturation becomes tractable by reintroducing some
ordering into the process [3, 9, 12].

Importantly, these guides do not have to be concrete terms
and can instead be specified as precise sketches. Such sketches
allow the user to describe the rough shape of a term without
burdening them with providing the exact structure.
While this works great when an expert user can specify

useful guides, such an expert is not always available. Fur-
thermore, intricate knowledge of both the domain and the
rewrite system underlying the equality saturation is required.
The expert has to “guess” what might be helpful to the equal-
ity saturation, an intuition that does not always match reality.
In some cases, expert guides even proved detrimental to the
overall performance by leading the equality saturation down
a suboptimal path [4].

3 Machine Learning Guided Equality
Saturation

We propose extending Expert Guided Equality Saturation
with a machine learning model towards a Machine Learning
Guided Equality Saturation. This represents the final step in
Figure 1 in which we replace the expert providing the guides
with a machine learning model.

There are multiple possible formulations for how such a
model could be built. We choose to follow the overall ap-
proach of guided equality saturation by building a model
that aims to generate guides and uses equality saturation to
perform the rewriting. This is an alternative to building a
model that aims to predict a rewrite sequence in the enor-
mous rewrite space.
With these guides as intermediates, we can simply reuse

the expert guided equality saturation implementation. By
predicting the guides, we retain a degree of interpretability
in the model’s output, which is not the case with other ma-
chine learning formulations. Since the actual rewrites are
still performed by the underlying equality saturation engine
in the e-graph, we can, by construction, never be fooled by
the model into accepting a wrong proof or performing a
miscompilation.

3.1 The Guide Generating Model
Our choice of model architecture is critical. While we could
finetune an off-the shelve pretrained Decoder-Only Trans-
former architecture like LLaMa 3 [1] this approach has some
key downsides: We would be required to convert the AST of
the start and goal terms into a linear S-expressions and feed
those into the model. This would lose all structural informa-
tion and rely entirely on the model learning to recover that
information from brackets alone during training. This re-
quires a more expressive (and slower) model as well as more
data compared to an model architecture with an inductive
bias that takes advantage of tree structure.

At the opposite end of the spectrum, we could treat the
AST as a special case of fully connected graph and use graph
neural networks (GNN) methods to encode their information.
We believe that this has two key drawbacks:

1. We loose inductive bias since the model cannot take
advantage of the inherent tree structure of our AST. In-
stead, we would have to again provide the model with
additional annotations to specify the position of nodes
in the AST since a classic GNN architecture following
the message passing paradigm can, for example, nei-
ther distinguish the order of children of a node nor its
depth in a tree.

2. Research into graph generation models lags behind
those established for language modeling or image gen-
eration, and there are no obvious methods to reliably
generate tree structured ASTs as we require for our
guides.

We decided to pursue a third alternative: Based on prior
work[2, 7, 8] we designed a novel (Double-)Encoder-Decoder
Tree-Transformer that takes advantage of the structural tree
information. Figure 2 provides a description of this novel ar-
chitecture with its two encoders for the start and the goal in
the middle and on the right respectively and one decoder on
the left that autoregressively builds the AST of the guide one
node at a time. This architecture can be seen as an extension
of both the classic Transformer architecture as proposed by
[10], taking clues from graph neural networks that utilize
spectral information to supply the GNN with more struc-
tural information about the graph. The key difference lies in
the use of a modified disentangled attention mechanism[2].
Instead of encoding the absolute position of each node-token
within a flattened linearization of the original term by adding
a sinusoidal[10] or rotational[6] positional encoding to its
embedding vector, we modify the attention mechanism itself
to use learned positional embeddings for the relative position
of a node in the AST (see Figure 3).
Thanks to the use of multi-head attention, we are able

to dedicate some heads to the ancestor-descendant distance
and some to the sibling position. In the future, more other
distance metrics between nodes based on more advanced
analysis could easily be added.
Furthermore, we modified the decoder block to contain

two cross-attention layers instead of the usual single cross-
attention layer, in addition to the usual self-attention layer.
This allows the decoder to take attend both to the encoded
start term and goal term.

3.2 Explanations as Training Data
To train the model, we require a suitably large dataset con-
sisting of start terms, goal terms and guides in between for
each pair. At the time of this writing, no ready-to-use dataset
exists: We have to create such a dataset ourselves. For this,
we again turn to e-graphs and equality saturation. We seed



Machine Learning Guided Equality Saturation EGRAPHS, 20205, Seoul, South Korea

Partial Guide

Embedding

RMSNorm

Multi-Head
Tree-Attention

RMSNorm

Multi-Head
Tree-Attention

RMSNorm

Multi-Head
Tree-Attention

RMSNorm

Feed Forward

Linear

Softmax

Output
Probabilities

×𝑁

Start Term

Embedding

RMSNorm

Multi-Head
Tree-Attention

RMSNorm

Feed Forward

×𝑁

Goal Term

Embedding

RMSNorm

Multi-Head
Tree-Attention

RMSNorm

Feed Forward

×𝑁

Figure 2. Double-Encoder-Decoder Tree-Transformer Architecture. The outputs of the two stacked encoder blocks for the
start and the goal term are fed into the decoder block via two cross-attention layers. All Tree-Attention blocks use the modified
disentangled attention described in Figure 3

the e-graph with a start term and run equality saturation
with the same rewrite rules we later intend to use for the ma-
chine learning guided equality saturation until our e-graph
has grown to a size of 1GB in memory. We perform an analy-
sis to count up all terms up to double the size of the seed term
present in each e-class. This allows us to sample the e-graph
uniformly (up to the size limit) for terms in an e-class.
We then take the cartesian product of all sets of equiv-

alent sampled terms and reconstruct an explanations[11],
i.e. a valid sequence of rewrites from one term to the other

together with their intermediate terms. While such a rewrite
sequence is not guaranteed to be the shortest possible one,
it provides us with a reasonably good sequence. By splitting
the long sequence into shorter sub-sequences and taking
the term in the middle of each sub-sequence as the guide
along the rewrite path, we can finally construct the necessary
(𝑆,𝐺,𝑇 ) triples that make up our training data.



EGRAPHS, 20205, Seoul, South Korea Nicole Heinimann, Thomas Kœhler, and Michel Steuwer

Disentangled
Attention

Content

Position

𝑊 𝑐
𝑞

𝑊 𝑐
𝑘

𝑊 𝑐
𝑣

𝑊 𝑟
𝑞

𝑊 𝑟
𝑘

𝑄𝑐𝐾𝑟𝑇

𝑄𝑐𝐾𝑐𝑇

𝑄𝑟𝐾𝑐𝑇

⊕ Softmax

× Output

Attention = Softmax
(
𝑄𝑐𝐾𝑐𝑇 +𝑄𝑐𝐾𝑟𝑇 +𝑄𝑟𝐾𝑐𝑇

√
3𝑑𝑘

)
𝑉 𝑐

Notations:
𝑄𝑐 , 𝐾𝑐 ,𝑉 𝑐 : Content queries, keys, values

(projected via𝑊 𝑐
𝑞 ,𝑊

𝑐
𝑘
,𝑊 𝑐

𝑣 )
𝑄𝑟 , 𝐾𝑟 : Relative position queries, keys

(projected via𝑊 𝑟
𝑞 ,𝑊

𝑟
𝑘
)

𝑑𝑘 : Dimension of key vectors
⊕: Element-wise addition
×: Matrix multiplication

Figure 3. A single Disentangled Tree-Attention Head. Note that multiple heads are stacked together in one Multi-Headed
Tree-Attention block to incorporate different distance metrics such as ancestor-descendent distance or sibling position in an
AST

4 Current State
We are currently in the process of implementing and testing
the model and have been able to do initial test runs with
small models of 12, 92 and 312 million parameters. A falling
training loss, following a typical logarithmic scaling law for
both model size and training data indicates to us that the
model is indeed picking up on the task at hand.

We are experimenting with how the construction of train-
ing triples from extracted rewrite sequences affects model
performance. In the aforementioned test runs, we generated
the triples using recursive binary partitioning. This method
involves recursively splitting the original sequence into pro-
gressively smaller segments based on start and end points
until reaching a cutoff of five rewrites. For each resulting sub-
sequence, the start, midpoint, and end points are then added
to the dataset. Going forward, we want to also investigate a
training regime where the sequence is divided from the start
into equally sized and potentially overlapping subsequences
of fixed size.
In the talk, we will report on our preliminary results,

specifically the first full runs of machine learning guided
equality saturation and the guides generated by our model.

References
[1] Aaron Grattafiori et al. 2024. The Llama 3 Herd of Models. https:

//doi.org/10.48550/arXiv.2407.21783 arXiv:2407.21783 [cs].
[2] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020.

DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED
ATTENTION. https://openreview.net/forum?id=XPZIaotutsD

[3] Smail Kourta, Adel Abderahmane Namani, Fatima Benbouzid-Si Tayeb,
Kim Hazelwood, Chris Cummins, Hugh Leather, and Riyadh Baghdadi.
2022. Caviar: an e-graph based TRS for automatic code optimization. In
Proceedings of the 31st ACM SIGPLAN International Conference on Com-
piler Construction (CC 2022). Association for Computing Machinery,
New York, NY, USA, 54–64. https://doi.org/10.1145/3497776.3517781

[4] Thomas Kœhler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil
Trinder, and Michel Steuwer. 2024. Guided Equality Saturation. Pro-
ceedings of the ACM on Programming Languages 8, POPL (Jan. 2024),
58:1727–58:1758. https://doi.org/10.1145/3632900

[5] Rudi Schneider, Marcus Rossel, Amir Shaikhha, Andrés Goens, Thomas
Kœhler, and Michel Steuwer. 2025. Slotted E-Graphs. Proc. ACM
Program. Lang. 9, PLDI (2025).

[6] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and
Yunfeng Liu. 2023. RoFormer: Enhanced Transformer with Rotary
Position Embedding. https://doi.org/10.48550/arXiv.2104.09864
arXiv:2104.09864 [cs].

[7] Ze Tang, Chuanyi Li, Jidong Ge, Xiaoyu Shen, Zheling Zhu, and Bin
Luo. 2021. AST-Transformer: Encoding Abstract Syntax Trees Ef-
ficiently for Code Summarization. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 1193–1195.
https://doi.org/10.1109/ASE51524.2021.9678882 ISSN: 2643-1572.

[8] Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, Zhe-
lin Zhu, and Bin Luo. 2022. AST-trans: code summarization with
efficient tree-structured attention. In Proceedings of the 44th Inter-
national Conference on Software Engineering (ICSE ’22). Association
for Computing Machinery, New York, NY, USA, 150–162. https:
//doi.org/10.1145/3510003.3510224

[9] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and
Adrian Sampson. 2021. Vectorization for digital signal processors via

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1145/3497776.3517781
https://doi.org/10.1145/3632900
https://doi.org/10.48550/arXiv.2104.09864
https://doi.org/10.1109/ASE51524.2021.9678882
https://doi.org/10.1145/3510003.3510224
https://doi.org/10.1145/3510003.3510224


Machine Learning Guided Equality Saturation EGRAPHS, 20205, Seoul, South Korea

equality saturation. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS ’21). Association for Computing Machinery,
New York, NY, USA, 874–886. https://doi.org/10.1145/3445814.3446707

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is All you Need. In Advances in
Neural Information Processing Systems, Vol. 30. Curran Asso-
ciates, Inc. https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[11] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast and extensible
equality saturation. Artifact for "Fast and Extensible Equality Satura-
tion" 5, POPL (Jan. 2021), 23:1–23:29. https://doi.org/10.1145/3434304

[12] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey,
Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation for Tensor
Graph Superoptimization. Proceedings ofMachine Learning and Systems
3 (March 2021), 255–268. https://proceedings.mlsys.org/paper_files/
paper/2021/hash/cc427d934a7f6c0663e5923f49eba531-Abstract.html

https://doi.org/10.1145/3445814.3446707
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3434304
https://proceedings.mlsys.org/paper_files/paper/2021/hash/cc427d934a7f6c0663e5923f49eba531-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2021/hash/cc427d934a7f6c0663e5923f49eba531-Abstract.html

	Abstract
	1 Introduction
	2 Expert Guided Equality Saturation
	3 Machine Learning Guided Equality Saturation
	3.1 The Guide Generating Model
	3.2 Explanations as Training Data

	4 Current State
	References

