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Abstract

Equality saturation is a technique for implementing rewrite-
driven compiler optimizations by efficiently representing
many equivalent programs in so-called e-graphs. To improve
performance, the set of equivalent programs is grown by
applying rewrites in a purely additive way until a fixed point
is reached (saturation), or the search times out.

In practice, two issues limit the application of equality sat-
uration in programming language compilers. First, equality
saturation is not efficient for the name bindings (variables)
that appear in almost all programming languages. Second,
equality saturation does not scale to complex optimizations
with long rewrite sequences such as loop blocking.

This paper addresses both issues, thereby enabling equal-
ity saturation to be applied to more realistic programs and
compiler optimizations. First, we demonstrate how to dras-
tically improve the efficiency of equality saturation for a
functional language based on the typed lambda calculus.
Second, we introduce sketch-guided equality saturation, a
semi-automatic technique that allows programmers to pro-
vide sketches guiding rewriting when performing complex
optimizations.

We evaluate sketch-guided equality saturation by perform-
ing a series of realistic optimizations of matrix multiplication
expressed in the Rise functional language. The optimizations
include loop blocking, vectorization, and parallelization. We
demonstrate that naive equality saturation does not scale
to these optimizations, even with hours of exploration time.
Previous work on orchestrating rewrite sequences shows
that these optimizations can be expressed as rewrites, at
the cost of weeks of programmer effort. Our guided equal-
ity saturation combines the advantages of both techniques:
minimal programmer guidance enables complex compiler
optimizations to be applied in seconds.

1 Introduction

Term rewriting has been effective in optimizing compilers for
decades [7]. However, deciding when to apply each rewrite
rule is hard and has a huge impact on the performance of
the rewritten program: the so-called phase ordering problem.
The challenge is that the global benefit of applying a rewrite
rule depends on future rewrites. Maximizing local benefit

in a greedy fashion is not sufficient in the absence of a con-
vergence property, i.e. confluence and termination, as local
optima may be far away from the global optimum.
Equality saturation [30, 34] mitigates the phase ordering

problem by exploring many ways to apply rewrite rules.
Starting from an input program, an equality graph (e-graph)
is grown iteratively until reaching a fixed point (saturation),
achieving a goal, or timing out. An e-graph efficiently rep-
resents a large set of equivalent programs, and is grown by
repeatedly applying all possible rewrite rules in a purely
additive way. After growing the e-graph, the best program
found is extracted from it using a cost model, e.g. one that
selects the fastest program.

The applicability of equality saturation has recently been
broadened by introducing an amortized invariant restoration
technique called rebuilding and a mechanism called e-class
analyses [34]. Nevertheless, the application of equality sat-
uration for complex optimizations of realistic programs is
limited by the following two issues.

Languages with name bindings. Previous equality sat-
uration work either explicitly avoids the use of name binding
for efficiency reasons [27], or uses a simple but inefficient
implementation [34]. As almost all programming languages
use variables, and hence name binding, this paper explores
practical ways of efficiently implementing equality satura-
tion for languages with name bindings. We study equality
saturation for the lambda calculus as it is the standard formal-
ism for functional languages. We show that using De Bruijn
indices avoids overloading the e-graph with 𝛼-equivalent
terms, and that an approximate substitution enables searches
performed in milliseconds where searches with naive explicit
substitution quickly run out of memory.

Complex optimizations, i.e. those requiring long rewrite
sequences. On each equality saturation iteration, the e-graph
tends to grow bigger since every possible rewrite rule is ap-
plied in a purely additive way. The growth rate is extremely
rapid for some combinations of rewrite rules, such as asso-
ciativity and commutativity that generate an exponential
number of equivalent permutations [20, 32, 34]. In such cases,
discovering long rewrite sequences that require many itera-
tions is unfeasible. One way to address this issue is to limit
the number of rules applied [32, 34], but this risks not find-
ing optimizations that require rules that have been omitted.
A second way is to use an external solver to speculatively
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(d) after applying rewrite (3) twice

Figure 1. Growing e-graph for the term (𝑚𝑎𝑝 (𝑚𝑎𝑝 𝑓 )) ◦ (𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ◦ (𝑚𝑎𝑝 (𝑚𝑎𝑝 𝑔))). An e-graph is a set of e-classes
themselves containing equivalent e-nodes. The dashed boxes are e-classes, and the solid boxes are e-nodes. New e-nodes and
e-classes are shown in red.

add equivalences [20], but this requires the identification of
sub-tasks that can benefit from being delegated.

This paper proposes sketch-guided equality saturation as a
technique to break down complex optimizations into smaller
ones. The programmer specifies rewrite goals by writing
sketches: program patterns that leave details unspecified.
While sketches have previously been used as a starting point
for program synthesis [16], our work uses sketches to end
an equality saturation search once the sketch is satisfied.
Guiding the rewriting using a sequence of sketches decom-
poses it into a sequence of relatively small equality saturation
searches.

We demonstrate that sketch-guiding enables complex opti-
mizations in the Rise functional language. We start by show-
ing that existing equality saturation techniques are not suf-
ficient for applying complex optimizations as the e-graph
grows too large. Previous work on Rise produced highly
optimized code at the cost of the programmer orchestrating
sequences of thousands of rewrite rules [10]. Our evaluation
demonstrates that by combining our efficient name binding
techniques with sketch-guiding, complex optimizations are
discovered by equality saturation with little programmer
guidance and in a matter of seconds.

To summarize, the contributions of this paper include:

• The development of new techniques to support effi-
cient equality saturation for a typed lambda calculus.
The techniques are realized in the Risegg implementa-
tion for the Rise data-parallel functional language. We
demonstrate the effectiveness of Risegg by optimizing
a binomial filter application (section 3).
• Proposing sketch-guided equality saturation as a new
semi-automatic technique to perform complex opti-
mizations that require long rewrite sequences not dis-
coverable by equality saturation alone. We demon-
strate the practicality of sketches for guiding realistic
optimizations of Harris corner detection (section 4).

• A systematic comparative evaluation of sketch-guided
equality saturation for optimizing matrix multiplica-
tion. Seven complex optimizations are demonstrated,
including loop blocking, vectorization, and paralleliza-
tion. We show that the complex optimizations are not
feasible with fully automated equality saturation due
to excessive runtime andmemory consumption. In con-
trast, sketch-guided equality saturation performs the
optimizations in seconds and with low memory con-
sumption. At most four sketches are required to guide
the search, i.e. significantly less effort than purely man-
ual techniques (section 5).

2 Background

This section gives a technical overview of equality saturation
and its application to express compiler optimizations. We
also introduce the functional language Rise [10] in which
the programs we optimize in this paper are expressed.

2.1 Equality saturation

Equality saturation [30, 34] is a technique for efficiently im-
plementing rewrite-driven compiler optimizations without
committing to a single rewrite choice. We demonstrate how
equality saturation mitigates the phase ordering problem by
using a rewriting example where greedily reducing a cost
function is not sufficient to find the optimal program.
Rewriting is often used to fuse operators and avoid that

every operator writes its result to memory, for example:

(𝑚𝑎𝑝 (𝑚𝑎𝑝 𝑓 )) ◦ (𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ◦ (𝑚𝑎𝑝 (𝑚𝑎𝑝 𝑔))) (a)
−→ ∗

(𝑚𝑎𝑝 (𝑚𝑎𝑝 (𝑓 ◦ 𝑔))) ◦ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (b)

The initial term (a) applies function 𝑔 to each element of a
matrix (using two nested𝑚𝑎𝑝s), transposes the result, and
then applies function 𝑓 to each element. The optimized term
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Figure 2. The congruence invariant simplifies the e-graph
on the left by merging two identical e-nodes for𝑚𝑎𝑝 𝑓 into
a single e-node as shown on the right.

(b) avoids storing an intermediate matrix in memory and
transposes the input before applying𝑔 and 𝑓 to each element.
The following rewrite rules are sufficient to perform this
optimization, if applied in the correct order:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒◦𝑚𝑎𝑝 (𝑚𝑎𝑝 𝑎) ←→𝑚𝑎𝑝 (𝑚𝑎𝑝 𝑎)◦𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (1)
𝑎 ◦ (𝑏 ◦ 𝑐) ←→ (𝑎 ◦ 𝑏) ◦ 𝑐 (2)

𝑚𝑎𝑝 𝑎 ◦𝑚𝑎𝑝 𝑏 −→𝑚𝑎𝑝 (𝑎 ◦ 𝑏) (3)

Rule (1) states that transposing a two-dimensional array
before or after applying a function to the elements is equiva-
lent. Rule (2) states that function composition is associative.
Finally, rule (3) is the rewrite rule for map fusion. In this
example, minimizing the term size results in maximizing
fused maps and, therefore, is a good cost model.

If we greedily apply rewrite rules that lower term size, we
will only apply rule (3) as this is the only rule that reduces
term size. However, rule (3) cannot be directly applied to
term (a): we are in a local optimum. The only way to reduce
term size further is to first apply the other rewrite rules,
which may or may not pay off depending on future rewrites.

We now investigate step-by-step how equality saturation
enables to minimize term size by exploring many possible
ways to apply rewrites without getting stuck in local minima.

First, an equality graph (e-graph) representing the initial
term is constructed (fig. 1a). An e-graph is a set of equivalence
classes (e-classes). An e-class is a set of equivalent nodes (e-
nodes). An e-node 𝐹 (𝑒1, .., 𝑒𝑛) is an 𝑛-ary function symbol (𝐹 )
from the term language, associated with 𝑛 child e-classes (𝑒𝑖 ).
Examples of symbols are𝑚𝑎𝑝 , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , and ◦. The e-graph
data structure is used during equality saturation to efficiently
represent and rewrite a set of equivalent programs.

Second, the e-graph is iteratively grown by applying rules
non-destructively (figs. 1b to 1d). While standard term rewrit-
ing picks a single possible rewrite in a depth-first manner,
equality saturation explores all possible rewrites in a breadth-
first manner.Within an equality saturation iteration, rewrites
are applied independently: theymay only depend on rewrites
from previous iterations. For the sake of simplicity, we only
apply a handful of rewrite rules in fig. 1. When applying a
rewrite rule, the equality between its left-hand side and its
right-hand side is recorded in the e-graph. Rewrite rules stop
being applied when a fixed point is reached (saturation), or
when another stopping criteria is reached (e.g. timeout). If
saturation is reached, it means that all possible rewrites have
been explored.
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Figure 3. Smallest term size computed for each e-class using
an e-class analysis (blue number in the top-right corners of e-
classes). For illustrative purposes, we also show the smallest
term size for e-nodes where it differs from its e-class value.

At that point, the e-graph represents many terms that
are equivalent according to the applied rules. An e-graph is
much more compact than a regular set of terms, as equiv-
alent sub-terms are shared. E-graphs are capable of repre-
senting exponentially many terms in polynomial space, and
even infinitely many terms in the presence of cycles [34]. To
maximize sharing, a congruence invariant is maintained: in-
tuitively identical e-nodes should not be in different e-classes
(fig. 2). However, we will see later that extensive sharing does
not necessarily prevent the e-graph size from exploding.

Finally, an extraction procedure selects the best term from
the e-graph according to a cost function. For a local cost
function 𝑐 (i.e. with signature 𝑐 (𝐹 (𝑘1 : 𝐾, .., 𝑘𝑛 : 𝐾)) : 𝐾 if
the cost is of type 𝐾 ), a relatively simple bottom-up e-graph
traversal can be used [23]. More complex cost functions
require more complex extraction procedures [32, 35].
An e-class analysis [34] enables propagating an analysis

data of type 𝐷 in a bottom-up fashion, and can be used for
extraction when the cost function is local. An e-class analysis
is defined by providing two functions:
• A function constructing the analysis data from an 𝑛-ary
symbol 𝐹 combined with the data 𝑑𝑖 of its child e-classes:

𝑚𝑎𝑘𝑒 (𝐹 (𝑑1 : 𝐷, .., 𝑑𝑛 : 𝐷)) : 𝐷
• A function merging the analysis data of e-nodes that are
in the same e-class:

𝑚𝑒𝑟𝑔𝑒 (𝑑1 : 𝐷,𝑑2 : 𝐷) : 𝐷
To compute the smallest term for each e-class, we define an
e-class analysis with 𝐷 = (term size, term):

𝑚𝑎𝑘𝑒 (𝐹 (𝑑1, .., 𝑑𝑛)) = (1+
∑︁
𝑖

𝑓 𝑠𝑡 (𝑑𝑖 ), 𝐹 (𝑠𝑛𝑑 (𝑑1), .., 𝑠𝑛𝑑 (𝑑𝑛)))

𝑚𝑒𝑟𝑔𝑒 (𝑑1, 𝑑2) = if 𝑓 𝑠𝑡 (𝑑1) ≤ 𝑓 𝑠𝑡 (𝑑2) then 𝑑1 else 𝑑2
The resulting term size component of the analysis is shown
in fig. 3. It now only requires looking at the analysis data for
the e-class of term (a) to extract term (b) as the optimized
term. The optimized term is of size 7 compared to the initial
term of size 9.
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2.2 Rewriting the Rise functional language

In this paper we study the lambda calculus because it for-
malizes functional languages. To demonstrate the impact
of our approach in practice, we use Rise [10] that imple-
ments a typed lambda calculus, and many of the examples
in this paper are Rise programs. Rise is a spiritual successor
of Lift [28, 29] that demonstrated performance portabil-
ity across hardware by automatically applying semantics-
preserving rewrite rules to optimize programs from domains
including scientific code [11] and convolutions [18].

Rise provides standard lambda abstraction (𝜆x. b), function
application (f x), identifiers and literals. Rise also offers an ex-
tensible set of higher-order functions describing well-known
data-parallel computational patterns. While Rise provides
many computational patterns, we focus in this paper on two
important patterns. map applies a function to each element
of an array. reduce combines all elements of an array to a
single value given a binary reduction operator. To make Rise
accessible to equality saturation, Rise programs are easily
encoded as terms of shape 𝐹 (𝑡1, .., 𝑡𝑛) as shown in table 1.

To control optimization Rise is complemented by a second
programming language, Elevate [10] that allows program-
mers to describe complex compiler optimizations as compo-
sitions of rewrite rules, called strategies. The performance of
the code generated by Rise and Elevate has been to shown
to be on par with the state-of-the-art deep learning compiler
TVM [3] for matrix multiplication [10]; and competitive to -
or even up to 1.4× better than - the state-of-the-art image
processing compiler Halide [26] for the Harris corner detec-
tion [14]. This makes Rise an interesting base language for
exploring rewrite-based compiler optimizations.

Unfortunately writing Elevate strategies manually is low
level and time-consuming. A strategy describes precisely the
rewrite sequence required for a particular optimization. Even
though Elevate provides combinators and abstractions to
help express complex optimizations, the authors of [10] and
[14] report that expressing complex optimizations required
between 2 and 4 person weeks of effort. The fundamental
problem is that Elevate strategies express optimizations
in an imperative style and require the programmer to or-
chestrate all rewrite steps deterministically. Besides being

Rise program 𝑭 𝒕1, .., 𝒕𝒏
𝜆x. b lam x b
f x app f, x
x var x

map map
reduce reduce

Table 1. Correspondence between Rise programs and
𝐹 (𝑡1, .., 𝑡𝑛) term representation for the purposes of equality
saturation.

(𝜆𝑥 . 𝑏) 𝑒 −→𝑏 [𝑒/𝑥] (𝛽-reduction)
𝜆𝑥. 𝑓 𝑥 −→ 𝑓 (𝜂-reduction)

if 𝑥 not free in 𝑓
𝑚𝑎𝑝 𝑓 (𝑚𝑎𝑝 𝑔 𝑎𝑟𝑔) −→𝑚𝑎𝑝 (𝜆𝑥 . 𝑓 (𝑔 𝑥)) 𝑎𝑟𝑔

(map-fusion)
𝑚𝑎𝑝 (𝜆𝑥. 𝑓 𝑔𝑥) −→ 𝜆𝑦. 𝑚𝑎𝑝 𝑓 (𝑚𝑎𝑝 (𝜆𝑥 . 𝑔𝑥) 𝑦)

if 𝑥 not free in 𝑓 (map-fission)

Figure 4. Rise rewrite rules using substitution, name bind-
ings (lambda abstractions), and freshness predicates.

costly to develop, this also significantly limits applicability
of optimizations to many different programs: small program
differences require adjustments to the rewrite sequence. So
it is highly desirable to find some automatic, or at least semi-
automatic, rewriting technique to reduce the programmer
effort required to optimize Rise programs.

3 Efficient Equality Saturation for the

Lambda Calculus

This section addresses the first issue with prior equality
saturation techniques: the lack of effective support for lan-
guages with name bindings. We explore the engineering
design choices required to efficiently implement equality sat-
uration for a typed lambda calculus. A set of design choices
are realized for the Rise language in the new Risegg imple-
mentation that is heavily inspired by the egg library [34].
The performance numbers in this section are from a proto-
type of Risegg1 for an untyped subset of Rise implemented
in Rust on top of the egg library.
To assess the efficiency of equality saturation in this sec-

tion, our aim is to be able to discover certain rewrite goals
in reasonable time on a laptop machine, i.e. with an AMD
Ryzen 5 PRO 2500U processor and using no more than 4GB
of RAM. Discovering a rewrite goal means that it is feasible
to grow an e-graph starting from the initial program until
the goal program is represented in the e-class of the initial
program.
Applying equality saturation to lambda calculus terms

requires the efficient support of standard operations and
rewrites. Figure 4 shows the standard rules of 𝛽-reduction
and 𝜂-reduction. The other two rules encode standard map-
fusion and map-fission, and are interesting because they
introduce new name bindings on their right-hand-side.

3.1 Substitution

In equality saturation standard term substitution cannot be
used to directly compute 𝑏 [𝑒/𝑥] from the 𝛽-reduction rule
in an e-graph, because 𝑏 and 𝑒 are not terms but e-classes.

1 https://github.com/Bastacyclop/egg-rise
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A simple way to address this is to use explicit substitution
as in egg [34]. A syntactic constructor is added to represent
substitution, as well as rewrite rules to encode its small-step
behavior:

(𝑎 𝑏) [𝑒/𝑣] −→ (𝑎[𝑒/𝑣] 𝑏 [𝑒/𝑣])
𝑣 [𝑒/𝑣] −→ 𝑒

Explicit substitution adds all intermediate substitution
steps to the e-graph, quickly exploding its size. We can
demonstrate the e-graph size problem by attempting to dis-
cover a trivial rewrite goal using equality saturation:

𝑚𝑎𝑝 (𝜆𝑥. 𝑓4 (𝑓3 (𝑓2 (𝑓1 𝑥)))) −→∗

𝜆𝑦. 𝑚𝑎𝑝 (𝜆𝑥. 𝑓4 (𝑓3 𝑥)) (𝑚𝑎𝑝 (𝜆𝑥 . 𝑓2 (𝑓1 𝑥)) 𝑦)
(4)

The rewrite in (4) merely requires a sequence of two map-
fission rules, one map-fusion rule, plus a couple of the 𝜂-
reduction and 𝛽-reduction rules that are pervasive when
rewriting functional programs:

𝑚𝑎𝑝 (𝜆𝑥. 𝑓4 (𝑓3 (𝑓2 (𝑓1 𝑥)))) −→∗

𝜆𝑦. 𝑚𝑎𝑝 𝑓4 (𝑚𝑎𝑝 (𝜆𝑥 . 𝑓3 (𝑓2 (𝑓1 𝑥))) 𝑦) −→∗

𝜆𝑦. 𝑚𝑎𝑝 𝑓4 (𝑚𝑎𝑝 𝑓3 (𝑚𝑎𝑝 (𝜆𝑥. 𝑓2 (𝑓1 𝑥)) 𝑦) −→∗

𝜆𝑦. 𝑚𝑎𝑝 (𝜆𝑥 . 𝑓4 (𝑓3 𝑥)) (𝑚𝑎𝑝 (𝜆𝑥. 𝑓2 (𝑓1 𝑥)) 𝑦)

(5)

Despite this simple rewrite sequence, rewrite goal (4) can-
not reasonably be discovered using explicit substitution. Af-
ter more than 40 seconds of equality saturation (10 iterations)
the available 4GB memory is exhausted and the goal has not
been discovered. The e-graph contains 13M e-nodes and 3M
e-classes.

So intermediate substitution steps cannot be added to the
e-graph, otherwise it grows uncontrollably. To avoid interme-
diate substitutions we propose extraction-based substitution
that works as followings.

1. extract a term for each e-class involved in the substi-
tution (i.e 𝑏 and 𝑒);

2. perform standard term substitution;
3. add the resulting term to the e-graph.
Extraction-based substitution is far more efficient than

explicit substitution. For example we can discover the rewrite
goal (4) in less than a millisecond, with 5 iterations, and the
e-graph contains only 364 e-nodes and 277 e-classes.

Extraction-based substitution is, however, an approxima-
tion as it computes the substitution for a subset of the terms
represented by 𝑏 and 𝑒 , and ignores the rest. Figure 5 shows
an example where the initial e-graph is in the middle, and
the e-graph after extraction-based substitution with 𝑏 = 𝑥

and 𝑒 = 𝑦 on the right. This particular choice results in an
e-graph lacking the 𝑖𝑑 𝑥 program that is included in the
e-graph without approximation (left in fig. 5).
In practice, we have not observed this approximation to

be an issue, and believe this is for two reasons. First, the sub-
stitution is computed on each equality saturation iteration,
where different terms may be extracted, increasing coverage

lam x

app

y

id

lam x

var x

lam x

app y

lam x
→

id var x

lam x

app y

lam x

id var x

id
b = x, e = y

→

non-approximate 
oracle

extraction-basedstarting point

Figure 5. Example of 𝛽-reduction with extraction-based
substitution (right). The initial e-graph (middle) represents
(𝜆𝑥. 𝑖𝑑 𝑥) 𝑦. After 𝛽-reduction, the e-graph does not repre-
sent 𝑖𝑑 𝑦 because 𝑥 has been extracted for 𝑏 in the rewrite
rule; ignoring 𝑖𝑑 𝑥 .

1 def dot a b = reduce + 0 (map (𝜆y. (fst y) × (snd y))

1 map (map 𝜆nbh. dot (join weights2d) (join nbh))
2 (map transpose (slide 3 1 (map (slide 3 1) input)))

−→ ∗

1 map (𝜆nbhL.
2 map (𝜆nbhH. dot weightsH nbhH)
3 (slide 3 1 (map (𝜆nbhV. dot weightsV nbhV)
4 transpose nbhL)))
5 (slide 3 1 input)

Figure 6. Optimizing the binomial filter. The initial Rise
program iterates over 2D neighborhoods (nbh). A dot product
is computed between the weights (weight2d shown in eq. (6))
and each neighborhood. The optimized program iterates over
two 1D neighborhoods (vertical and horizontal) instead.

of the set of terms represented by 𝑏 and 𝑒 . Second, many of
the ignored equivalences are recovered either by e-graph
congruence, or by applying further rewrite rules.
Future work may investigate alternative substitution im-

plementations to balance efficiency with non-approximation.
For efficiency extraction-based substitution is used in Risegg.

3.2 Name Bindings

In equality saturation inappropriate handling of name bind-
ings easily leads to serious efficiency issues. Consider rewrite
rules like map-fusion that create a new lambda abstraction
on their right-hand side. Which name should they introduce
when they are applied? In standard term rewriting, generat-
ing a fresh name using a global counter (aka. gensym) is a
common solution. However, if a new name is generated each
time the rewrite rule is applied, the e-graph will quickly be
overloaded with many 𝛼-equivalent terms2.
Fewer 𝛼-equivalent terms are introduced if fresh names

are generated as a function of the matched e-class identifiers.
However as the e-graph grows and e-classes are merged
e-class identifiers change, and 𝛼-equivalent terms are still
generated and duplicated in the e-graph.

2 Two terms are 𝛼-equivalent if one term can be made equivalent to the
other simply by renaming variables.
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Figure 6 shows an example that demonstrates the practical
issues when rewriting with 𝛼-equivalent terms. This Rise
program computes a binomial filter – a 2D convolution – that
is expressed using the slide pattern creating a sliding window
to group neighboring elements that are then multiplied with
the convolution kernel and summed. The purpose of the
rewrite shown is to separate the 2D filter into two 1D filters
according to a well-known convolution kernel equation:

1 2 1
2 4 2
1 2 1

 =


1
2
1

 ×
[
1 2 1

]
(6)

This separation optimization reduces both memory accesses
and arithmetic complexity. An Elevate rewriting strategy
achieves the optimization by orchestrating 30 rewrite rules
including 17 𝜂/𝛽-reductions [14].
The binomial filter optimization goal cannot be discov-

ered by equality saturation if fresh names are generated for
each rewrite rule application. After two minutes and 9 it-
erations the 4GB memory is exhausted, and the goal has
not been discovered. The e-graph contains 2.9M e-nodes and
1.4M e-classes, emphasizing the need for more efficient name
handling.
De Bruijn indices [5] are a standard technique for repre-

senting lambda calculus terms without naming the bound
variables, and avoid the need for 𝛼 conversions. If De Bruijn
indices enable two 𝛼-equivalent terms to become structurally
equivalent, the regular e-graph congruence invariant3 is
enough to prevent the duplication of 𝛼-equivalent terms.
Therefore, we translate our terms and rewrite rules to use
De Bruijn indices instead of names, and observe a signifi-
cant change in efficiency. With De Bruijn indices, 100ms is
enough to discover the binomial filter rewrite goal. After 11
iterations, the e-graph contains 3K e-nodes and 1K e-classes.
Hence De Bruijn indices are used in Risegg.

True equality modulo 𝛼-renaming. While De Bruijn
indices give a significant performance improvement they
do not provide equality modulo 𝛼-renaming for sub-terms.
Consider 𝑓 (𝜆𝑥. 𝑓 ) = %0 (𝜆. %1), where %𝑖 represents De
Bruijn indices. Although %0 and %1 are structurally differ-
ent, they both correspond to the same variable 𝑓 . Recent
work has shown how to implement efficient hashing modulo
alpha renaming [17], and could be used to investigate an
even more efficient e-graph representation. Another possi-
bility would be to investigate the effectiveness of nominal
rewriting techniques [8].

Translating name-based rules into index-based rules.

Using De Bruijn indices means that rewrite rules also need to
manipulate terms with De Bruijn indices. Thankfully, more
user-friendly name-based rewrite rules can be automatically
translated to the index-based rules used internally [2].
3 Reminder: the congruence invariant ensures that identical e-nodes will
not end up in different e-classes.

Shifting De Bruijn indices. De Bruijn indices must be
shifted when a term is used with different surrounding lamb-
das. In Risegg, extraction-based index shifting works as sub-
stitution in three steps:
• extract a term from the e-class whose indices need shifting;
• perform standard index shifting;
• add the resulting term to the e-graph.

AvoidingNameBindings usingCombinators. It is also
possible to avoid name bindings entirely [27]. For example,
it is possible to introduce a function composition combi-
nator ‘◦’ (also used in section 2.1), that greatly simplifies
map-fusion and map-fission rules:

𝑓 (𝑔 𝑥) −→ (𝑓 ◦ 𝑔) 𝑥 (◦-intro)
𝑚𝑎𝑝 𝑓 ◦𝑚𝑎𝑝 𝑔 −→𝑚𝑎𝑝 (𝑓 ◦ 𝑔) (map-fusion2)
𝑚𝑎𝑝 (𝑓 ◦ 𝑔) −→𝑚𝑎𝑝 𝑓 ◦𝑚𝑎𝑝 𝑔 (map-fission2)

However, this approach has its own downsides. Associativ-
ity rules are required, which we know increases the growth
rate of the e-graph [34]. Only using a left-/right-most asso-
ciativity rule avoids generating too many equivalent ways
to parenthesize terms. But other rewrite rules now have to
take this associativity convention into account, making their
definition more difficult and their matching more expensive.
In general, matching modulo associativity or commutativity
are algorithmically hard problems [1].
The ◦ combinator on its own is also not sufficient to re-

move the need for name bindings. At one extreme, combina-
tory logic could be used as any lambda calculus term can be
represented in combinatory logic, replacing function abstrac-
tion by a limited set of combinators. However, translating
a lambda calculus term into combinatory logic results in a
term of size 𝑂 (𝑛3) in the worst case, where 𝑛 is the size of
the initial term [15]. Translating existing rewrite systems to
combinatory logic would be challenging in itself.

3.3 Freshness Predicates

Handling predicates is not trivial in equality saturation. The
𝜂-reduction has the side condition that "if 𝑥 not free in 𝑓 ",
but in an e-graph 𝑓 is an e-class and not a term.
The predicate could be handled precisely by filtering the

e-class 𝑓 into 𝑓 ′ = {𝑡 | 𝑡 ∈ 𝑓 , 𝑥 not free in 𝑡}, and using 𝑓 ′
on the right-hand-side of the rule. However, this requires
splitting an e-class in two: one that satisfies the predicate, and
one that does not. This would reduce sharing and increase
the e-graph size, be difficult to reason about in the presence
of cycles, and interfere with the e-graph amortized invariant
restoration optimization [34].
The design of Risegg makes an engineering trade-off, as

for substitution, and following egg [34]. In Risegg, the 𝜂-
reduction rewrite rule is only applied if∀𝑡 ∈ 𝑓 . 𝑥 not free in 𝑡 .
Advantages are that this predicate is efficient to compute
using an e-class analysis, and that there is no need to split
the e-class. The disadvantage is that it is an approximation
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lam x

app

f var x

lam y

app

lam x

app

var x

lam y

app

→/

f

would represent invalid term: (λy. f) x

Figure 7. Example where 𝜂-reduction is not applied. The
initial e-graph represents 𝜆𝑥. 𝑓 𝑥 , but 𝜂-reduction is not
triggered because 𝑓 = (𝜆𝑦. 𝑓 ) 𝑥 where 𝑥 is free. Using ∃
instead of ∀ in our predicate, we would obtain the e-graph
on the right which represents 𝑓 , but also invalid terms such
as (𝜆𝑦. 𝑓 ) 𝑥 where 𝑥 is not bound anymore.

that ignores some valid terms. Figure 7 shows an example
where 𝜂-reduction is not applied by Risegg. In practice, we
have not observed this approximation to be an issue, e.g. for
the results presented in section 5.

3.4 Adding Types

Typed lambda calculi are pervasive providing the foundation
for almost all functional languages, and a key consideration
is how to add types into the e-graph. Considering the terms
(𝜆𝑥. 𝑥) (0 : 𝑖𝑛𝑡) and (𝜆𝑥 . 𝑥) (0.0 : 𝑓 𝑙𝑜𝑎𝑡), there are broadly
two alternatives:
• Keep types polymorphic (one e-class):

𝜆𝑥 . 𝑥 : ∀𝑡 . 𝑡 → 𝑡

• Instantiate the types (two e-classes):

𝜆𝑥. 𝑥 : int→ int ≠ 𝜆𝑥. 𝑥 : float→ float

While keeping types polymorphic enables more sharing,
instantiating types enables more precise type-based rewrit-
ing. While polymorphic types can be computed using an
e-class analysis, instantiated types must be embedded in the
e-graph. There is no obvious best solution, instead we ob-
serve a trade-off between the amount of sharing and the
amount of information. Since Rise rewrite rules often match
precise types, types are instantiated in Risegg.

Rewrite rule type inference. To avoid having to explic-
itly type rewrite rules by hand, we infer their types. After
inferring the types on the left-hand-side, we check that the
right-hand-side is well-typed for any well-typed left-hand-
side matching program. When applied, typed rewrite rules
match (deconstruct) types with their left-hand-side, and con-
struct types on their right-hand-side. Type annotations can
be used in Risegg to constrain the inferred types.

Hash-consing types. Since types are duplicated many
times in the e-graph, and since structural type equality is
often required, we hash-cons types for efficiency [9].

3.5 Summary

This section has showed important aspects to consider when
using equality saturation for languages with name bind-
ings. Specifically, we have seen that De Bruijn indices and
extraction-based substitution are critical in practice: making
the difference between running out of memory or optimizing
functional programs in seconds.

4 Sketch-Guided Equality Saturation

The previous section discussed crucial techniques for effi-
ciently optimizing functional programs using equality satu-
ration. But are these techniques enough to perform complex
optimizations, i.e. those requiring long rewrite sequences?
In [10] the authors report that 63,000 rewrite steps are re-
quired to perform loop blocking, vectorization, and paral-
lelization optimizations for a matrix multiplication. Our eval-
uation in section 5 shows that even with the techniques dis-
cussed in section 3 equality saturation is unable to perform
these optimizations, exhausting the available 60GB memory
after more than one hour of search.

The issue is that as the e-graph grows, iterations become
slower and require more memory. Combined with the fact
that the e-graph is grown in a breadth-first manner, this
makes finding long rewrite sequences inherently hard. The
growth rate is aggravated by some combinations of rewrite
rules, such as associativity and commutativity that generate
an exponential number of equivalent permutations [20, 32,
34]. This motivates keeping the size of the e-graph small.

4.1 Keeping the e-graph size under control

Amongst the many ways to reduce e-graph size during ex-
ploration, we identify the following three general directions.

Deleting programs that are not considered valuable.

Often there are programs that we are obviously not inter-
ested in and, therefore, these could be removed from the
e-graph. For example, we implement a filter removing all
e-classes that only contribute to constructing programs of
more than a given size limit. This is useful because exploring
unreasonably large terms is typically not desirable.
Unfortunately, due to the extensive sharing, deleting in-

dividual programs from the e-graph is difficult. Therefore,
Risegg only deletes e-nodes and e-classes, affecting all of
their parents. This prohibits deleting individual programs
that share sub terms with other programs that we do not
want to delete. In the future, it would be interesting to
develop more sophisticated capabilities, e.g. deleting the
matched left-hand-side of a rewrite rule that would also
allow performing normalization.

Prioritizing growth in promising directions. Previous
work proposes rewrite rule schedulers as a way to control
which rewrite rules should be applied on a given equality sat-
uration iteration [34]. The SimpleScheduler from the egg
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1 slide(p+4, p) ▷ mapGlobal(
2 circularBuffer(global , 3, grayLine) ▷
3 circularBuffer(global , 3, sobelLine) ▷
4 mapSeq(coarsityLine)
5 ) ▷ join

Listing 1. Harris shape after circular buffering [14]

1 ? ▷ isSlide(p+4, p) ▷ app(mapGlobal , contains(? ▷
2 isCircularBuffer(global , 3, containsGrayLine) ▷
3 isCircularBuffer(global , 3, containsSobelLine) ▷
4 app(mapSeq , containsCoarsityLine)
5 ))

Listing 2. Harris sketch after circular buffering

Figure 8. An abstract program snippet describing how the
shape of a Rise Harris corner detection evolves after opti-
mizations (listing 1). These shape intuitions can be captured
by defining a sketch (listing 2) that features program holes
(?) and constraints (contains).

library applies all rewrite rules on each iteration. The default
BackoffScheduler prevents specific rules from being ap-
plied too often, reducing e-graph growth in the presence of
“explosive” rules such as associativity and commutativity. Our
experience with Rise is that using the BackoffScheduler is
counterproductive because the desired optimizations depend
on explosive rules. Future work may look into finding more
advanced ways to prioritize e-graph growth, but at present
Risegg does not use a rewrite rule scheduler.

Starting over. An effective way to reduce e-graph size is
to build and grow a new e-graph from the most promising
term represented in a previous e-graph. Our sketch-guided
technique develops this approach by defining a sequence of
equality saturation searches, while defining a clear goal for
each search in the form of a sketch.

4.2 The Intuition for Sketches

When designing optimizations it is useful for the program-
mer to think about the desired shape of the optimized pro-
gram. Sketches are program patterns that capture this intu-
ition while leaving details unspecified.

Previous work on optimizing the Harris corner detection
image processing pipeline with rewrites [14] used program
snippets like listing 1 to explain the effect of the various
optimizations. The key insight is that explanatory program
snippets can be utilized as sketches such as the one shown
in listing 2. This sketch resembles the snippet in listing 1 but
adds program holes (?) and constraints (contains) to explicitly
elide program details.

Where Elevate rewriting is purely manual, sketch-guided
equality saturation is semi-automated. That is, it allows the
programmer to declaratively specify the desired optimization
goal (the sketch) without needing to specify the detailed
rewrite sequence to get there.

𝑆 ::= ? | 𝐹 (𝑆, .., 𝑆) | 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑆) | 𝑆 ∨ 𝑆

𝑅(?) = 𝑇 = {𝐹 (𝑡1, .., 𝑡𝑛)}
𝑅(𝐹 (𝑠1, .., 𝑠𝑛)) = {𝐹 (𝑡1, .., 𝑡𝑛) | 𝑡𝑖 ∈ 𝑅(𝑠𝑖 )}
𝑅(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠)) = 𝑅(𝑠) ∪ {𝐹 (𝑡1, .., 𝑡𝑛) | ∃𝑡𝑖 ∈ 𝑅(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠))}

𝑅(𝑠1 ∨ 𝑠2) = 𝑅(𝑠1) ∪ 𝑅(𝑠2)

Figure 9. Grammar of SketchBasic (top) and terms repre-
sented by SketchBasic (bottom).

4.3 Sketch Definition

We define the simple SketchBasic language with just four
constructors as a proof of concept. The syntax of Sketch-
Basic and the set of terms that the constructors represent
is defined in fig. 9. A sketch 𝑠 represents a set of terms 𝑅(𝑠),
such that 𝑅(𝑠) ⊂ 𝑇 where𝑇 denotes all terms in the language
we rewrite. We say that any 𝑡 ∈ 𝑅(𝑠) satisfies the sketch 𝑠 .

The ? sketch is the least precise as it represents all terms in
the language. The 𝐹 (𝑠1, .., 𝑠𝑛) sketch represents all terms that
match a specific 𝑛-ary function symbol 𝐹 from the term
language, and whose 𝑛 children satisfy sketches 𝑠𝑖 . The
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠) sketch represents all terms containing a term
that satisfies sketch 𝑠 . Finally, the 𝑠1 ∨ 𝑠2 sketch represents
terms satisfying either 𝑠1 or 𝑠2.

When rewriting terms in a typed language sketches may
be annotated with a type sketch (𝑠 :: 𝑝𝑡 ) constraining the
type of terms. If 𝑅(𝑝𝑡) denotes the set of terms satisfying the
type sketch 𝑝𝑡 , then 𝑅(𝑠 :: 𝑝𝑡) = 𝑅(𝑠) ∩ 𝑅(𝑝𝑡). The grammar
of type sketches depends on the language we rewrite. We
elide type sketches from our definition of SketchBasic for
simplicity, but use them in section 5.

When writing sketches, a balance has to be found between
being too precise (representing only one program) and too
vague (representing programs that are not desired). This
balance also interacts with the choice of rules, since programs
that may be found by the search are 𝑅(𝑠) ∩ 𝐸𝑄 (𝑡, 𝑟𝑢𝑙𝑒𝑠)
where 𝐸𝑄 (𝑡, 𝑟𝑢𝑙𝑒𝑠) represents the set of terms that can be
discovered to be equivalent to the initial term 𝑡 according to
the given 𝑟𝑢𝑙𝑒𝑠 . This means that using a more restricted set
of rules generally enables specifying less precise sketches.

4.4 Sketch-Guided Equality Saturation Algorithm

The idea behind Sketch-Guided Equality Saturation is to use
multiple sketches to decompose a complex rewrite goal into
a series of simpler rewrite goals. The overall process is illus-
trated in fig. 10.
The programmer guides the system by providing a se-

quence of sketches (𝑠𝑘𝑒𝑡𝑐ℎ1, .., 𝑠𝑘𝑒𝑡𝑐ℎ𝑛). Successive equality
saturation searches are performed to find equivalent terms
satisfying one sketch after the other. Because each sketch
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input
term

programmer

sketchNsatisfying

e-graphinitialize

apply

extract

costNminimizing
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rules1
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rulesN
cost1
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final
term

Figure 10. Diagram illustrating Sketch-Guided Equality Saturation. Starting from an input term, 𝑁 -many consecutive searches
are performed to find a term satisfying each sketch. All searches behave as detailed on the right for the 𝑁 -th search.

is satisfied by many terms, the programmer must also pro-
vide cost models (𝑐𝑜𝑠𝑡1, .., 𝑐𝑜𝑠𝑡𝑛) to select the term to be used
as the start point for the next search. Sets of rewrite rules
(𝑟𝑢𝑙𝑒𝑠1, .., 𝑟𝑢𝑙𝑒𝑠𝑛) are provided to grow the e-graph in each
search.
The pseudo-code for the sketch-guided equality satura-

tion algorithm is shown in listing 3. The extract function
(line 12) is used to extract a term from the e-graph that sat-
isfies the specified sketch while minimizing the specified
cost model, and we describe it in the next subsection. The
found function (line 11) is used to stop growing the e-graph
by checking whether extract succeeded in returning a term.
For efficiency our implementation of found does not rely on
extract and checks only if a term could be extracted.

4.5 Sketch-Guided Equality Saturation Extraction

To extract the best program that satisfies a SketchBasic
sketch 𝑠 from an e-graph 𝑔 we define a helper function
𝐸 (𝑐, 𝑠, 𝑔), where 𝑐 is a cost function that must be monotonic
and local. While extract returns a program from an e-class 𝑒 ,
the helper 𝐸 returns a map from e-classes to optional tuples
of costs and terms. After invoking 𝐸 we simply look up the
e-class 𝑒 in the map and extract the term from the optional
tuple. For efficiency, we memoize previously computed re-
sults of 𝐸. The extract function is recursively defined over the
four SketchBasic cases as follows.
Case 1: 𝒔 = ?. This case is equivalent to extracting the

programs minimizing 𝑐 from the e-graph. We implement
this extraction as an e-class analysis (section 2) with data

1 def SGES(term , params ): Option[Term] =
2 if params.isEmpty
3 then Some(term)
4 else
5 (sketch , cost , rules) = params.head
6 g = create empty e-graph
7 normTerm = normalize(term)
8 using a configurable normal form
9 e = g.add(normTerm)
10 grow g using rules until found(g, e, sketch)
11 if found(g, e, sketch) then
12 nextTerm = extract(g, e, sketch , cost)
13 SGES(nextTerm , params.tail)
14 else
15 None

Listing 3. Sketch-guided Equality Saturation Algorithm

type 𝐷 = Option[(𝑘, 𝑡)] and functions𝑚𝑎𝑘𝑒 that constructs
analysis data and𝑚𝑒𝑟𝑔𝑒 that combines analysis data from
e-nodes in the same e-class:

𝑚𝑎𝑘𝑒 (𝐹 (𝑑1, .., 𝑑𝑛)) =


𝑆𝑜𝑚𝑒

(
𝑐 (𝐹 (𝑘1, .., 𝑘𝑛)),
𝐹 (𝑡1, .., 𝑡𝑛)

)
(𝑘𝑖 , 𝑡𝑖 ) ∈ 𝑑𝑖

𝑁𝑜𝑛𝑒 otherwise

𝑚𝑒𝑟𝑔𝑒 (𝑑1, 𝑑2) =


if 𝑘1 ≤ 𝑘2 then 𝑑1 else 𝑑2 (𝑘𝑖 , _) ∈ 𝑑𝑖
𝑑1 (𝑘1, _) ∈ 𝑑1
𝑑2 (𝑘2, _) ∈ 𝑑2
𝑁𝑜𝑛𝑒 otherwise

Case 2: 𝒔 = 𝑭 (𝒔1, .., 𝒔𝒏). We consider each e-class 𝑒 con-
taining 𝐹 (𝑒1, .., 𝑒𝑛) e-nodes and the terms that should be
extracted for each child e-class 𝑒𝑖 . We write 𝐸 (𝑐, 𝑠, 𝑔) [𝑒] for
indexing into the map returned by 𝐸:

𝐸 (𝑐, 𝐹 (𝑠1, .., 𝑠𝑛), 𝑔) [𝑒] ={
𝑆𝑜𝑚𝑒 (𝑐 (𝐹 (𝑘1, .., 𝑘𝑛)), 𝐹 (𝑡1, .., 𝑡𝑛)) (𝑘𝑖 , 𝑡𝑖 ) ∈ 𝐸 (𝑐, 𝑠𝑖 , 𝑔) [𝑒𝑖 ]
𝑁𝑜𝑛𝑒 otherwise

Case 3: 𝒔 = 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒔(𝒔2). We use another e-class analysis
and initialize the analysis data to 𝐸 (𝑐, 𝑠2, 𝑔) corresponding to
the base case where 𝑅(𝑠2) ⊂ 𝑅(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠2)). To𝑚𝑎𝑘𝑒 the
analysis data we consider all terms that would contain terms
from 𝑠2 and keep the best by reducing them using𝑚𝑒𝑟𝑔𝑒:

𝑚𝑎𝑘𝑒 (𝐹 (𝑑1, .., 𝑑𝑛)) = 𝑟𝑒𝑑𝑢𝑐𝑒 𝑚𝑒𝑟𝑔𝑒
{𝑆𝑜𝑚𝑒 (𝑐 (𝐹 (𝑘1, .., 𝑘 𝑗 , .., 𝑘𝑛)), 𝐹 (𝑡1, .., 𝑡 𝑗 , .., 𝑡𝑛)) |

𝑖 ≠ 𝑗, (𝑘𝑖 , 𝑡𝑖 ) ∈ 𝐸 (𝑐, ?, 𝑔) [𝑒𝑖 ], (𝑘 𝑗 , 𝑡 𝑗 ) ∈ 𝑑 𝑗 }

To𝑚𝑒𝑟𝑔𝑒 the analysis data, we do the same as for 𝑠 = ?.

Case 4: 𝒔 = 𝒔1 ∨ 𝒔2. We𝑚𝑒𝑟𝑔𝑒 the results from 𝑠1 and 𝑠2:

𝐸 (𝑐, 𝑠1 ∨ 𝑠2, 𝑔) (𝑒) =𝑚𝑒𝑟𝑔𝑒 (𝐸 (𝑐, 𝑠1, 𝑔) (𝑒), 𝐸 (𝑐, 𝑠2, 𝑔) (𝑒))

4.6 Summary

This section introduces sketch-guided equality saturation
as a semi-automated process where the programmer guides
multiple equality saturation searches. They do so by specify-
ing sketches that declaratively describe the program shapes
after the desired optimizations have been applied.
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version sketches found time RAM rules e-graph

baseline 1 yes 0.5s 20 MB 2 51, 49
blocking 1 yes 1h+ 35GB 5M 4M, 2M
vectorization 1 no 1h+ 60GB+ ??? ???
loop-perm 1 no 1h+ 60GB+ ??? ???
array-packing 1 no 35mn 60GB+ ??? ???
cache-blocks 1 no 35mn 60GB+ ??? ???
parallel 1 no 35mn 60GB+ ??? ???

Table 2. Optimization time and memory consumption for
fully automated equality saturation. Only the “baseline”
and “blocking” optimized versions could be found. All other
optimizations could not be found, exceeding 60GB.

5 Evaluation

This section compares three different optimization meth-
ods: Elevate rewriting strategies, fully automated equality
saturation, and the new sketch-guided equality saturation.
In the evaluation both equality saturation techniques use
the efficient implementation of name bindings presented in
section 3.
We evaluate the optimization of a matrix multiplication

as it allows us to compare sketch-guided equality saturation
against published Elevate strategies that specify realistic
optimizations equivalent to TVM schedules [10]. TVM is a
state-of-the-art deep learning compiler [3] and [10] demon-
strates that expressing optimizations performed by TVM as
compositions of rewrites is possible and achieves the same
high performance as TVM. The optimizations performed
by TVM and Elevate are typical compiler optimizations,
including loop blocking, loop permutations, vectorization,
and parallelization. Overall we evaluate all seven differently
optimized versions of matrix multiplication presented in [10]
and described in the TVM manual.

In this evaluation, we make sure that the generated C code
is equivalent modulo variable names to the manually opti-
mized versions that already demonstrated competitive per-
formance compared with TVM. First, we compare howmuch
time and memory are required for fully automated equality
saturation and our sketch-guided equality saturation. Then,
we discuss how much programmer effort is required using
manually written Elevate strategies compared to writing
our sketches.

5.1 Optimization Time and Memory Consumption

Experimental Setup. Both Elevate4 and our full Risegg
implementation5 are written in Scala and we use standard
Java utilities for measurements: System.nanoTime() to mea-
sure runtime, and the Runtime api to compute maximum
memory consumption by sampling regularly.

4 https://github.com/elevate-lang/elevate
5 https://github.com/rise-lang/shine/tree/sges/src/main/scala/rise/eqsat

version sketches found time RAM rules e-graph

baseline 1 yes 0.5s 20 MB 2 51, 49
blocking 2 yes 7s 0.3 GB 11K 11K, 7K
vectorization 3 yes 7s 0.4 GB 11K 11K, 7K
loop-perm 3 yes 4s 0.3 GB 6K 10K, 7K
array-packing 4 yes 5s 0.4 GB 9K 10K, 7K
cache-blocks 4 yes 5s 0.5 GB 9K 10K, 7K
parallel 4 yes 5s 0.4 GB 9K 10K, 7K

Table 3. Optimization time and memory consumption for
sketch-guided equality saturation. All optimizations are
found in seconds using less than 0.5 GB of memory, requiring
only up to 4 sketches.

The experiments are performed on two platforms. For
Elevate strategies and our sketch-guided equality satura-
tion, we use a less powerful AMD Ryzen 5 PRO 2500U with
4GB of RAM available to the JVM. For fully-automated non-
guided equality saturation, we use a more powerful Intel
Xeon E5-2640 v2 with 60GB of RAM available to the JVM.

Fully Automated Equality Saturation. Table 2 shows
the runtime and memory consumption of using a single fully
automated equality saturation to perform seven different op-
timizations. The search terminates as soon as the optimized
version is found in the e-graph. Most optimizations are not
found before exhausting the 60GB of available memory. Only
the “baseline” and “blocking” versions are found and the
search for the blocking version requires more than 1h and
about 35GB of RAM. Millions of rewrite rules are applied and
the e-graph contains millions of e-nodes and e-classes. More
complex optimizations involve more rewrite rules, creating a
richer space of equivalent programs but exhausting memory
faster. As examples, “vectorization” and “loop-perm” include
vectorization rules, while “array-packing”, “cache-blocks”
and “parallel” include rules for memory storage.

Sketch-Guided Equality Saturation. Table 3 shows the
runtime and memory consumption of our sketch-guided
equality saturation, where sketches guide the optimization
process and break a single equality saturation search into
multiple. All optimizations are found in less than 10s, using
less than 0.5GB of RAM. Interestingly the number of rewrite
rules applied by our semi-automatic approach is in the same
order of magnitude as for the manual Elevate strategies [10].
On one hand, equality saturation applies more rules than nec-
essary because of its explorative nature. On the other hand,
Elevate strategies apply more rules than necessary because
they re-apply the same rule to the same sub-expression and
do not orchestrate the shortest rewrite path possible. The
constructed e-graphs contains no more than 104 e-nodes and
e-classes, at least two orders of magnitude less than the 106
required for “blocking” without sketch-guidance.
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Summary. While complex optimizations of matrix multi-
plication are not feasible with fully automated equality satu-
ration, they are feasible with sketch-guided equality satura-
tion. In finding all optimized version in less than 10 seconds,
our semi-automated technique is practical and only about
one order of magnitude slower than the Elevate strategies
that perform these optimizations in under a second. Next, we
investigate the programmer effort of sketch-guided equality
saturation compared to orchestrating the rewrite sequence
manually with Elevate.

5.2 Programmer Effort

Elevate strategies. Elevate strategies [10] are programs
describing optimizations as compositions of rewrite rules.
While Elevate is a functional language, strategies are inher-
ently imperative in nature as they describe the rewrite steps
required to transform the initial program into an optimized
one. In contrast, sketches declaratively describe the desired
programs rather than how to reach them.
Elevate enables the development of abstractions that

help write concise strategies, such as the one performing
the “blocking” optimization in listing 4. Unfortunately, these
abstractions are often program specific and complex to imple-
ment. For example, the reorder abstraction in line 5 is defined
as shown in listing 5. The implementation of this one ab-
straction is 43 lines long, involves the definition of 8 internal
strategies, and carefully composes them together with more
generic strategies in a recursive process. Still, this reorder

abstraction is – despite its name – not capable of reordering
generic nestings of map and reduce patterns, but only works for
the matrix multiplication example. Additionally, it is hard
for the programmer to reason about the list parameter which
represents the desired reordering: what will the resulting pro-
gram look like? Overall, the “blocking” optimization requires
112 lines of program-specific Elevate code.

The first authors of [10] and [14] that used Elevate for op-
timizingmatrixmultiplication and image processing pipelines
estimated6 that they spent between two person-weeks and
one-person month to develop the Elevate strategies.

Sketches. To demonstrate their simplicity we discuss the
sketches written for the matrix multiplication versions. We
start by defining useful sketch abstractions that combine
generic constructs from SketchBasicwith Rise-specific type
annotations (listing 6). In the code, -> is a function type and n.

dt an array type of n elements of type dt. The type annotations
restrict the iteration domains of patterns like map and reduceSeq.
We use similar definitions for other language constructs.

Listing 7 shows the sketch for the (basically unoptimized)
“baseline” version. The sketch describes the desired program
structure of two nested map patterns and a nested reduce. The
comments on the right show the equivalent nested for loops.
6 in private communication with us
7 https://github.com/rise-lang/shine/blob/sges/src/main/scala/rise/elevate/strategies/algorithmic.scala

1 val blocking = ( baseline ‘;‘
2 tile (32 ,32) ‘@‘ outermost(mapNest (2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

Listing 4. Elevate blocking strategy [10]

1 // overall 43 lines of code
2 def reorder(l: List[Int]) =
3 normForReorder ‘;‘ (reorderRec(l) ‘@‘ topDown)
4
5 def normForReorder = // + 3 lines
6
7 def reorderRec(l: List[Int]) = e => {
8 def freduce(s) = // + 1 line
9 def freduceX(s) = // + 1 line
10 def stepDown(s) = // + 1 line
11 def isFullyAppliedReduceSeq = // + 2 line
12 def isFullyAppliedMap = // + 1 line
13 def moveReductionUp(pos: Int) = // + 4 lines
14 // ... moveReductionUp(pos -1) ...
15
16 l match {
17 // nothing to reorder , go further down
18 case ... => // ... reorderRec (...) ...
19 // reordering to do
20 case ... =>
21 // ... reorderRec (...) ..., + 5 lines
22 case ... => // base and failure case + 3 lines
23 } }

Listing 5. Simplified version of Elevate reorder strategy7

1 def containsMap(n: NatPat , f: Sketch): Sketch =
2 contains(app(map :: ? -> n.? -> ?, f))
3 def containsReduceSeq(n: NatPat , f: Sketch): Sketch =
4 contains(app(reduceSeq :: ? -> ? -> n.? -> ?, f))
5 def containsAddMul: Sketch =
6 contains(app(app(+, ?), contains(×)))

Listing 6. Some sketch abstractions used in the evaluation

1 containsMap(m, | for m:
2 containsMap(n, | for n:
3 containsReduceSeq(k, | for k:
4 containsAddMul))) | .. + .. * ..

Listing 7. Sketch for the baseline version

The sketch describing the “blocking” version in listing 8
corresponds to an optimized program where the imperative
loop nests have been split and reordered such that the itera-
tion space is chunked into blocks of 4 × 32 × 32 processed
by the three innermost for loops.
In contrast to the strategy in listing 4 sketches focus on

the effect the optimization has on the program, rather than
how the transformation is performed step-by-step. Develop-
ing sketches is significantly easier: we estimate that it took
about two person-days to develop all sketches used for our
evaluation, in contrast to the weeks required to develop the
strategies. We also believe, that it is more intuitive to de-
scribe familiar program shapes rather than composing rules
that rewrite the program.
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1 containsMap(m / 32, | for m / 32:
2 containsMap(n / 32, | for n / 32:
3 containsReduceSeq(k / 4, | for k / 4:
4 containsReduceSeq (4, | for 4:
5 containsMap (32, | for 32:
6 containsMap (32, | for 32:
7 containsAddMul)))))) | .. + .. * ..

Listing 8. Sketch for the blocking version

1 containsMap(m / 32, | for m / 32:
2 containsMap (32, | for 32:
3 containsMap(n / 32, | for n / 32:
4 containsMap (32, | for 32:
5 containsReduceSeq(k / 4, | for k / 4:
6 containsReduceSeq (4, | for 4:
7 containsAddMul)))))) | .. + .. * ..

Listing 9. Intermediate sketch specifying how to split loops.

version sketches

blocking split + reorder1
vectorization split + reorder1 + lower1
loop-perm split + reorder2 + lower2
array-packing split + reorder2 + store + lower3
cache-blocks split + reorder2 + store + lower4
parallel split + reorder2 + store + lower5

Table 4. Decomposition of each version into logical steps. A
sketch is defined for each logical step.

Sketches for Guiding the Search. Using only the sketch
in listing 8 enables equality saturation to find the optimized
“blocking” program, but requires over 1 hour and 35GB. By
guiding the search with an additional sketch shown in list-
ing 9 we can significantly accelerate the search to less than
10s. This guiding sketch describes a program shapewhere the
map and reduce patterns have been split but not yet reordered.
Table 4 shows how each optimization version can be de-

scribed by logical optimization steps, each corresponding
to a sketch describing the program after the step has been
applied. Interestingly, the split sketch shown in listing 9 is a
useful first guide for all optimized versions.

Choice of Rules and Cost Model. Besides the sketches,
programmers also specify the rules used in each search and
a cost model. For the split sketch, 8 rules are required
explaining how to split map and reduce. The reorder sketches
require 9 rules that swap various nestings of map and reduce.
The store sketch requires 4 rules and the lower sketches
10 rules including map-fusion, 6 rules for vectorization, 1
rule for loop unrolling and 1 rule for loop parallelization. If
we naively use all rules for the blocking search, the search
time increases by about 25×, still finding the optimizations
in minutes but showing the importance of selecting a small
set of rules.

We use a simple cost model that minimizes weighted term
size. Common rules and cost models are easy to reuse.

6 Related Work

Automatic Optimization. Some compiler optimizations
can be fully automated via equality saturation or heuristic
searches [19, 28, 30, 36]. Although this approach can auto-
matically yield high performance, it is not always feasible
or even desirable as it lacks user control, may result in poor
performance and may be too time-consuming.

Optimization Strategies. Compiler optimizations can be
precisely controlled with rewriting strategies [10, 14, 31]
or schedules [3, 26]. However, optimization strategies are
challenging to write, non-declarative, and quickly become
over-detailed and program-specific.

Equality SaturationwithBindings.We are not the first
to attempt applying equality saturation to languages with
binding. Willsey et al. implement a partial evaluator for the
lambda calculus in [34] using explicit substitution. Although
conceptually simple, this implementation has a prohibitively
high performance cost as we demonstrated in section 3. In
[27], Smith et al. propose access patterns as a way to avoid
the need for binding structures when representing tensor
programs. In this paper, we present practical solutions to
make equality saturation with bindings more efficient.

Sketching. The idea of sketching has been introduced for
program synthesis [16], along with counterexample guided
inductive synthesis which combines a synthesizer with a
validation procedure. Our approach in this paper is different
aswe target optimizations rather than program synthesis.We
use sketches as program patterns to filter a set of equivalent
programs generated via equality saturation, and as a result,
we do not need a validation procedure.

Equational Reasoning with E-graphs. E-graphs were
originally designed for efficient congruence closure in the-
orem provers [21], and are used in the Z3 theorem prover
[6]. They have also recently been used for semantic code
search in the Yogo tool [25]. In the realm of theorem proving,
rewriting strategies can be compared to procedural proof lan-
guages [12, 24], while the sketch approach can be compared
to declarative proof languages [4, 13, 22, 33].

7 Conclusion

This paper broadens the applicability of equality saturation
for programming languages in two ways. We drastically im-
prove the efficiency of equality saturation for languages with
name bindings, like the lambda calculus. We propose sketch-
guided equality saturation as a semi-automatic technique
to scale equality saturation to complex optimizations that
require long rewrite sequences. The experimental evaluation
demonstrates that sketch-guided equality saturation enables
seven sophisticated optimizations of matrix multiplication
to be applied within seconds. The guided approach is declar-
ative, and requires far less effort than imperative Elevate
rewrite strategies. Moreover, most of the optimizations can-
not be applied with fully-automated equality saturation.

12



Sketch-Guided Equality Saturation

Acknowledgments

We would like to thank Max Willsey for the open-source
egg library and his valuable feedback; the Rise and Elevate
teams for their open-source work. This work was supported
by the Engineering and Physical Sciences Research Council
[EP/W007940/1].

References

[1] Dan Benanav, Deepak Kapur, and Paliath Narendran. 1987. Complexity
of matching problems. Journal of symbolic computation 3, 1-2 (1987),
203–216.

[2] Eduardo Bonelli, Delia Kesner, and Alejandro Ríos. 2000. A de Bruijn
notation for higher-order rewriting. In International Conference on
Rewriting Techniques and Applications. Springer, 62–79.

[3] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. 2018. {TVM}: An automated end-to-end optimizing compiler
for deep learning. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 578–594.

[4] Pierre Corbineau. 2007. A declarative language for the Coq proof
assistant. In International Workshop on Types for Proofs and Programs.
Springer, 69–84.

[5] N.G de Bruijn. 1972. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Mathematicae (Proceedings) 75,
5 (1972), 381–392.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 337–340.

[7] Nachum Dershowitz. 1993. A taste of rewrite systems. In Func-
tional Programming, Concurrency, Simulation and Automated Reasoning.
Springer, 199–228.

[8] Maribel Fernández and Murdoch J Gabbay. 2007. Nominal rewriting.
Information and Computation 205, 6 (2007), 917–965.

[9] Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-safe mod-
ular hash-consing. In Proceedings of the 2006 Workshop on ML. 12–19.

[10] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying
Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving high-
performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies. Proceedings of
the ACM on Programming Languages 4, ICFP (2020), 1–29.

[11] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. 2018. High performance stencil code gen-
eration with lift. In Proceedings of the 2018 International Symposium
on Code Generation and Optimization, CGO 2018, Vösendorf / Vienna,
Austria, February 24-28, 2018. ACM, 100–112.

[12] John Harrison. 1996. HOL Light: A tutorial introduction. In Inter-
national Conference on Formal Methods in Computer-Aided Design.
Springer, 265–269.

[13] Matt Kaufmann and J Strother Moore. 1996. ACL2: An industrial
strength version of Nqthm. In Proceedings of 11th Annual Conference
on Computer Assurance. COMPASS’96. IEEE, 23–34.

[14] Thomas Koehler and Michel Steuwer. 2021. Towards a Domain-
Extensible Compiler: Optimizing an Image Processing Pipeline on
Mobile CPUs. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 27–38.

[15] Łukasz Lachowski et al. 2018. On the complexity of the standard
translation of lambda calculus into combinatory logic. Reports on
Mathematical Logic 53 (2018), 19–42.

[16] A Solar Lezama. 2008. Program synthesis by sketching. Ph.D. Disserta-
tion. PhD thesis, EECS Department, University of California, Berkeley.

[17] Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and
Simon Peyton Jones. 2021. Hashing modulo alpha-equivalence. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 960–973.

[18] Naums Mogers, Valentin Radu, Lu Li, Jack Turner, Michael O’Boyle,
and Christophe Dubach. 2020. Automatic generation of specialized
direct convolutions for mobile GPUs. In Proceedings of the 13th Annual
Workshop on General Purpose Processing using Graphics Processing Unit.
41–50.

[19] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015.
PolyMage: Automatic Optimization for Image Processing Pipelines.
SIGARCH Comput. Archit. News 43, 1 (March 2015), 429–443.

[20] Chandrakana Nandi, Max Willsey, Adam Anderson, James R Wilcox,
Eva Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthe-
sizing structured CAD models with equality saturation and inverse
transformations. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 31–44.

[21] Charles Gregory Nelson. 1980. Techniques for program verification.
Stanford University.

[22] Ulf Norell. 2007. Towards a practical programming language based on
dependent type theory. Vol. 32. Citeseer.

[23] Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary
Tatlock. 2015. Automatically improving accuracy for floating point
expressions. ACM SIGPLAN Notices 50, 6 (2015), 1–11.

[24] Lawrence C Paulson. 1994. Isabelle: A generic theorem prover. Vol. 828.
Springer Science & Business Media.

[25] Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020.
Semantic code search via equational reasoning. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 1066–1082.

[26] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,
Saman P. Amarasinghe, and Frédo Durand. 2012. Decoupling al-
gorithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31, 4 (2012), 32:1–32:12.

[27] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson,
Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock.
2021. Pure tensor program rewriting via access patterns (representa-
tion pearl). arXiv preprint arXiv:2105.09377 (2021).

[28] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating performance portable code using rewrite
rules: from high-level functional expressions to high-performance
OpenCL code. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015. ACM, 205–217.

[29] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.
Lift: a functional data-parallel IR for high-performance GPU code
generation. In CGO. ACM, 74–85.

[30] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.
Equality saturation: a new approach to optimization. In Proceedings
of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 264–276.

[31] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. 1998.
Building program optimizers with rewriting strategies. ACM Sigplan
Notices 34, 1 (1998), 13–26.

[32] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and
Dan Suciu. 2020. SPORES: sum-product optimization via relational
equality saturation for large scale linear algebra. arXiv preprint
arXiv:2002.07951 (2020).

[33] Markus Wenzel and Freek Wiedijk. 2002. A comparison of Mizar and
Isar. Journal of Automated Reasoning 29, 3 (2002), 389–411.

[34] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. Egg: Fast and exten-
sible equality saturation. Proceedings of the ACM on Programming
Languages 5, POPL (2021), 1–29.

13



Thomas Kœhler, Phil Trinder, and Michel Steuwer

[35] Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I Lipton,
Zachary Tatlock, and Adriana Schulz. 2019. Carpentry compiler. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–14.

[36] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey,
Sudip Roy, and Jacques Pienaar. 2021. Equality saturation for tensor
graph superoptimization. Proceedings of Machine Learning and Systems
3 (2021).

14


	Abstract
	1 Introduction
	2 Background
	2.1 Equality saturation
	2.2 Rewriting the Rise functional language

	3 Efficient Equality Saturation for the Lambda Calculus
	3.1 Substitution
	3.2 Name Bindings
	3.3 Freshness Predicates
	3.4 Adding Types
	3.5 Summary

	4 Sketch-Guided Equality Saturation
	4.1 Keeping the e-graph size under control
	4.2 The Intuition for Sketches
	4.3 Sketch Definition
	4.4 Sketch-Guided Equality Saturation Algorithm
	4.5 Sketch-Guided Equality Saturation Extraction
	4.6 Summary

	5 Evaluation
	5.1 Optimization Time and Memory Consumption
	5.2 Programmer Effort

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

