Thomas Kœhler

Andrés Goens Siddharth Bhat Tobias Grosser Phil Trinder Michel Steuwer

POPL Conference - London, January 2024

The Limits of Greedy Term Rewriting

Example: Eliminating Intermediate Memory with Fusion

Rewrite Rules:

Program to Optimize:

```
(map (map f)) • (transpose • (map (map g)))

local optimum,

cannot use less memory?
```

The Limits of Greedy Term Rewriting

Example: Eliminating Intermediate Memory with Fusion

Rewrite Rules:

Program to Optimize:

The Limits of Equality Saturation

Example: Improving Memory Access Patterns with Tiling

 $\begin{array}{l} (1),(2),(3) + (4) \ map \ n_1 \ (map \ n_2 \ f) \mapsto transpose \ \circ \ (map \ n_2 \ (map \ n_1 \ f)) \ \circ \ transpose \\ (5) \ map \ (n_1 \times n_2) \ f \mapsto join \ \circ \ (map \ n_1 \ (map \ n_2 \ f)) \ \circ \ (split \ n_2) \end{array}$

The Limits of Equality Saturation

Example: Improving Memory Access Patterns with Tiling

 $\begin{array}{l} (1),(2),(3) + (4) \ map \ n_1 \ (map \ n_2 \ f) \mapsto transpose \circ (map \ n_2 \ (map \ n_1 \ f)) \circ transpose \\ (5) \ map \ (n_1 \times n_2) \ f \mapsto join \circ (map \ n_1 \ (map \ n_2 \ f)) \circ (split \ n_2) \end{array}$

iterations

The Limits of Equality Saturation

Example: Improving Memory Access Patterns with Tiling

 $\begin{array}{l} (1),(2),(3) + (4) \ map \ n_1 \ (map \ n_2 \ f) \mapsto transpose \circ (map \ n_2 \ (map \ n_1 \ f)) \circ transpose \\ (5) \ map \ (n_1 \times n_2) \ f \mapsto join \circ (map \ n_1 \ (map \ n_2 \ f)) \circ (split \ n_2) \end{array}$

Example: Improving Memory Access Patterns with Tiling (3D)

Example: Improving Memory Access Patterns with Tiling (3D)

Example: Improving Memory Access Patterns with Tiling (3D)

► A single guide makes 3D Tiling reachable with 8Gb!

Case Study: Program Optimization

► We reproduced Matrix Multiplication optimizations from TVM:

 $https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html$

- transform loops blocking, permutation, unrolling
- change data layout
- ► add parallelism vectorization, multi-threading

▶ Prior work performs them by manually composing rewrite rules [ICFP 2020; CACM 2023]

Case Study: Program Optimization

Unguided Runtime and Memory Consumption

Case Study: Program Optimization

Guided Runtime and Memory Consumption

Case Study: Theorem Proving

• We implemented a **ges** tactic for the Lean theorem prover:

$$g^{-1-1} = g^{-1-1} * (g^{-1} * g) key$$

= g reasoning step

► Steps and details are omitted:

$$(g^{-1})^{-1} \xrightarrow{\text{mul. one}} (g^{-1})^{-1} \cdot 1 \xrightarrow{\text{mul. inverse}} (g^{-1})^{-1} \cdot (g^{-1} \cdot g)$$

$$\xrightarrow{\text{mul. assoc.}} ((g^{-1})^{-1} \cdot g^{-1}) \cdot g \xrightarrow{\text{mul. inverse}} 1 \cdot g \xrightarrow{\text{mul. one}} g$$

Case Study: Theorem Proving

Proving Theorems on Rings of Characteristic 2*

$$^{*}1 + 1 = 0, x + x = 0$$

Guided Equality Saturation

Conclusion

- Guided Equality Saturation offers an effective trade-off between manual and automated rewriting
- ► For program optimization, guides resemble explanatory code snippets
- ► For theorem proving, guides resemble key reasoning steps from textbooks
- ► More details in our paper, supplementary material and open-source code!

Conclusion

 Guided Equality Saturation offers an effective trade-off between manual and automated rewriting

Thanks!

- ► For program optimization, guides resemble explanatory code snippets
- ► For theorem proving, guides resemble key reasoning steps from textbooks
- ► More details in our paper, supplementary material and open-source code!

Sketches

► *Sketches* are program patterns that leave details unspecified

baseline sketch:

<pre>containsMap(m,</pre>	for m:
<pre>containsMap(n,</pre>	for n:
containsReduceSeq(k,	for k:
containsAddMul)))	+ ×

Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
 contains(app(app(+, ?), contains(×)))

Sketches

► *Sketches* are program patterns that leave details unspecified

baseline sketch:

<pre>containsMap(m,</pre>	for m:
<pre>containsMap(n,</pre>	for n:
<pre>containsReduceSeq(k,</pre>	for k:
<pre>containsAddMul)))</pre>	I + ×

► A sketch s is satisfied by a set of terms R(s):

```
 \begin{array}{l} \mbox{def containsAddMul: Sketch = $$$ contains(app(app(+, ?), contains(\times))) $$ \\ \mbox{R(containsAddMul) = { R(app(app(+, ?), contains(\times))) } $$$ \\ \mbox{} { f(t_1, \ldots, t_n) | \exists t_i \in R(containsAddMul) $$ \\ \mbox{R(app(app(+, ?), contains(\times))) = { app(app(+, t_1), t_2) | t_2 \in R(contains(\times)) $} $$ \\ \mbox{R(contains(\times)) = { X } \cup { F(t_1, \ldots, t_n) | \exists t_i \in R(contains(\times)) $} $$ \\ \end{array}
```

Sketches

► *Sketches* are program patterns that leave details unspecified

<i>baseline</i> sketch:	<pre>containsMap(m, containsMap(n, containsReduceSeq(k, containsAddMul)))</pre>	for m: for n: for k: + ×
sketch guide: how to split the loops before reordering them?	<pre>containsMap(m / 32, containsMap(32, containsMap(n / 32, containsReduceSeq(k / 4, containsReduceSeq(4, containsAddMul))))))</pre>	<pre>for m / 32: for 32: for n / 32: for 32: for 32: for k / 4: for 4: + ×</pre>
blocking sketch:	<pre>containsMap(m / 32, containsMap(n / 32, containsReduceSeq(k / 4, containsReduceSeq(4, containsMap(32, containsAdfMul))))))</pre>	<pre> for m / 32: for n / 32: for k / 4: for 4: for 32: for 32: + ×</pre>

Sketch Definition

S ::= ? | F(S, .., S) | contains(S)

$$R(?) = T = \{F(t_1, ..., t_n)\}$$
$$R(F(s_1, ..., s_n)) = \{F(t_1, ..., t_n) \mid t_i \in R(s_i)\}$$
$$R(contains(s)) = R(s) \cup \{F(t_1, ..., t_n) \mid \exists t_i \in R(contains(s))\}$$

```
def containsMap(n: NatSketch, f: Sketch): Sketch =
    contains(app(map :: ?t → n.?dt → ?y, f))
def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
    contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))
def containsAddMul: Sketch =
    contains(app(app(+, ?), contains(×)))
```

Rewritten Language

► Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

```
def mm a b =
  map (\laRow. | for aRow in a:
  map (\laRow bCol. | for bCol in transpose(b):
      dot aRow bCol) | ... = dot(aRow, bCol)
      (transpose b)) a

def dot xs ys =
  reduce + 0 | for (x, y) in zip(xs, ys):
      (map (\lambda(x, y). x × y) | acc += x × y
      (zip xs ys))
```

Sketches vs Full Program

goal	sketch guides	sketch goal	sketch sizes	program size
blocking	split	reorder ₁	7	90
vectorization	split + reorder ₁	lower ₁	7	124
loop-perm	split + reorder ₂	lower ₂	7	104
array-packing	split + reorder ₂ + store	lower ₃	7-12	121
cache-blocks	split + reorder ₂ + store	lower ₄	7-12	121
parallel	split + reorder ₂ + store	lower ₅	7-12	121

- ▶ each sketch corresponds to a logical transformation step
- ► sketches elide around 90% of the program
- intricate details such as array reshaping patterns are not specified (e.g. split, join, transpose)

Difficulty 1. Long Rewrite Sequences

Difficulty 2. Explosive Combinations of Rewrite Rules

Two example rules that quickly generate many possibilities:

	map f x	for m: = f()
split-join:	→ join (map (map f)	for m / n: for n:
	(split n x))	• = f()

	map (map f) x	for m: for n:
		= f()
transpose-around-map-map:	→ transpose	
	(map	for n:
	(map f)	for m:
	(transpose x))	I = f()

Handwritten Matrix Multiplication

```
for (int im = 0; im < m; im++) {
  for (int in = 0; in < n; in++) {
    float acc = 0.0f;
    for (int ik = 0; ik < k; ik++) {
        acc += a[ik + (k * im)] * b[in + (n * ik)];
    }
    output[in + (n * im)] = acc;
    }
}</pre>
```

Optimised program on the right:

+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines of code where things can go wrong threads, SIMD, index computations
- hardware specific (not portable)

```
float aT[n * k];
#pragma onp parallel for
for (int in = 0: in < (n / 32): in = 1 + in) {
        for (int ik = 0: ik < k: ik = 1 + ik) {
              #pragma omp simd
              for (int jn = 0; jn < 32; jn = 1 + jn) {
    aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
</pre>
#pragma onp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {</pre>
        for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];</pre>
                for (int jm = 0; jm < 32; jm = 1 + jm)
                       for (int in = 0; in < 32; in = 1 + in) {
                               tmp1[jn + (32 * jm)] = 0.0f;
              for (int ik = 0; ik < (k / 4); ik = 1 + ik) {
                        for (int im = 0; jm < 32; jm = 1 + jm) {
                               float tmp2[32]:
                               for (int in = 0: in < 32: in = 1 + in) {
                                       tmn2[in] = tmn1[in + (22 + im)];
                               #pragma omn simd
                               for (int in = 0; in < 32; in = 1 + in) {
                                       \frac{1}{(1 + 1)} = \frac{1}{(1 + 1)
                               Noragna ono sind
                               for (int in = 0: in < 32: in = 1 + in) {
                                       tmp2[in] += (a[((1 + (4 + ik)) + ((32 + im) + k)) + (im + k)] +
                                              aT[((1 + (i + ik)) + ((22 + in) + k)) + (in + k)]);
                               Moragna ono sind
                               for (int in = 0; in < 22; in = 1 + in) (
                                       tmn2[in] += (a[(2 + (4 + ik)) + ((32 + im) + k)) + (im + k)] +
                                              aT[((2 + (4 + ik)) + ((32 + in) + k)) + (in + k)]);
                               Moragna ono sind
                               for (int in = 0; in < 32; in = 1 + in) {
                                       tmp2[jn] += (a[((3 + (4 + ik)) + ((32 + im) + k)) + (im + k)] +
                                              aT[((3 + (4 + ik)) + ((32 + in) + k)) + (in + k)]);
                               for (int jn = 0; jn < 32; jn = 1 + jn) {
                                       tmp1[in + (32 * im)] = tmp2[in];
              for (int im = 0: im < 32: im = 1 + im)
                       for (int jn = 0; jn < 32; jn = 1 + jn) {
                               u_{1}(1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2, 1) = 0, (1, 2
```