Guided Equality Saturation

Thomas Kehler
Andrés Goens Siddharth Bhat
Tobias Grosser Phil Trinder Michel Steuwer

POPL Conference - London, January 2024

The Limits of Greedy Term Rewriting

Example: Eliminating Intermediate Memory with Fusion

Rewrite Rules:
(1) $\operatorname{map} a \circ \operatorname{map} b \mapsto \frac{\operatorname{map}(a \circ b)}{\mid}$
uses less memory

Program to Optimize:
$(\operatorname{map}(\operatorname{map} f)) \circ($ transpose $\circ(\operatorname{map}(\operatorname{map} g)))$

The Limits of Greedy Term Rewriting

Example: Eliminating Intermediate Memory with Fusion

Rewrite Rules:
(1) map $a \circ \operatorname{map} b \mapsto \frac{\operatorname{map}(a \circ b)}{\left.\right|_{\text {uses less memory }}}$
(2) transpose $\circ \operatorname{map}$ (map a) \mapsto map (map a) \circ transpose (3) $a \circ(b \circ c) \mapsto(a \circ b) \circ c$

no effect on memory

Program to Optimize:

$(\operatorname{map}(\operatorname{map} f)) \circ($ transpose $\circ(\operatorname{map}(\operatorname{map} g)))$
not explored by greedy rewriting: \downarrow (2); (3)
$((\operatorname{map}(\operatorname{map} f)) \circ(\operatorname{map}(\operatorname{map} g))) \cdot$ transpose

global optimum, uses less memory!

Equality Saturation

Example: Eliminating Intermediate Memory with Fusion

Equality Saturation

Example: Eliminating Intermediate Memory with Fusion

Equality Saturation

Example: Eliminating Intermediate Memory with Fusion

Equality Saturation

Example: Eliminating Intermediate Memory with Fusion

The Limits of Equality Saturation

Example: Improving Memory Access Patterns with Tiling

(1),(2),(3) + (4) $\operatorname{map} n_{1}\left(\operatorname{map} n_{2} f\right) \mapsto$ transpose $\circ\left(\operatorname{map} n_{2}\left(\operatorname{map} n_{1} f\right)\right) \circ$ transpose
(5) $\operatorname{map}\left(n_{1} \times n_{2}\right) f \mapsto$ join $\circ\left(\operatorname{map} n_{1}\left(\operatorname{map} n_{2} f\right)\right) \circ\left(\right.$ split $\left.n_{2}\right)$

1D Tiling:
$\operatorname{map}\left(n_{1} \times 32\right) f$
easy!
join $\circ\left(\operatorname{map} n_{1}(\operatorname{map} 32 f)\right) \circ($ split 32)

Memory Footprint (bytes):

1 iteration = apply rules breadth-first

The Limits of Equality Saturation

Example: Improving Memory Access Patterns with Tiling

(1),(2),(3) + (4) $\operatorname{map} n_{1}\left(\operatorname{map} n_{2} f\right) \mapsto$ transpose $\circ\left(\operatorname{map} n_{2}\left(\operatorname{map} n_{1} f\right)\right) \circ$ transpose (5) $\operatorname{map}\left(n_{1} \times n_{2}\right) f \mapsto$ join $\circ\left(\operatorname{map} n_{1}\left(\operatorname{map} n_{2} f\right)\right) \circ\left(\right.$ split $\left.n_{2}\right)$

2D Tiling:
map $\left(n_{1} \times 32\right)\left(\operatorname{map}\left(n_{2} \times 32\right) f\right)$

$$
\text { more challenging } \ldots
$$

join $\circ\left(\operatorname{map} n_{1}(\operatorname{map} 32\right.$ join $\left.)\right) \circ\left(\operatorname{map} n_{1}\right.$ transpose $) \circ$
$\left(\operatorname{map} n_{1}\left(\operatorname{map} n_{2}(\operatorname{map} 32(\operatorname{map} 32 f))\right)\right)$.
$\left(\operatorname{map} n_{1}\right.$ transpose $) \circ\left(\operatorname{map} n_{1}(\operatorname{map} 32(\right.$ split 32)$)) \circ($ split 32 $)$

Memory Footprint (bytes):

The Limits of Equality Saturation

Example: Improving Memory Access Patterns with Tiling

(1),(2),(3) + (4) $\operatorname{map} n_{1}\left(\operatorname{map} n_{2} f\right) \mapsto$ transpose $\circ\left(\operatorname{map} n_{2}\left(\operatorname{map} n_{1} f\right)\right) \circ$ transpose
(5) $\operatorname{map}\left(n_{1} \times n_{2}\right) f \mapsto$ join $\circ\left(\operatorname{map} n_{1}\left(\operatorname{map} n_{2} f\right)\right) \circ\left(\right.$ split $\left.n_{2}\right)$

3D Tiling:

$\operatorname{map}\left(n_{1} \times 32\right)\left(\operatorname{map}\left(n_{2} \times 32\right)\left(\operatorname{map}\left(n_{3} \times 32\right) f\right)\right)$
, unreachable with 8 Gb !
(map $\left(n_{1} \times 32\right)$ (map $\left(n_{2} \times 32\right)$ join $) \circ$ join $) \circ$ join 。
(map n_{1} transpose $\circ\left(\operatorname{map} n_{2}(\right.$ map 32 transpose) \circ transpose) $) \circ$
$\left(\operatorname{map} n_{1}\left(\operatorname{map} n_{2}\left(\operatorname{map} n_{3}(\operatorname{map} 32(\operatorname{map} 32(\operatorname{map} 32 f)))\right)\right)\right.$ 。
$\left(\operatorname{map} n_{1}\left(\operatorname{map} n_{2} \operatorname{transpose}\right)\right) \cdot\left(\operatorname{map} n_{1}\left(\operatorname{map} n_{2}(\operatorname{map} 32\right.\right.$ transpose$\left.)\right) \circ$ transpose) \circ (split 32) $\circ\left(\operatorname{map}\left(n_{1} \times 32\right)\left(\operatorname{map}_{2}(\operatorname{map} 32(\right.\right.$ split 32$\left.))\right) \circ($ split 32) $)$

Memory Footprint (bytes):

Guided Equality Saturation

Guided Equality Saturation

Guided Equality Saturation

Example: Improving Memory Access Patterns with Tiling (3D)

Guided Equality Saturation

Example: Improving Memory Access Patterns with Tiling (3D)

Guided Equality Saturation

Example: Improving Memory Access Patterns with Tiling (3D)

(a) Equality saturation (found: X)

(b) Guided equality saturation (found: \checkmark)

- A single guide makes 3D Tiling reachable with 8Gb!

Case Study: Program Optimization

- We reproduced Matrix Multiplication optimizations from TVM:
https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html
- transform loops blocking, permutation, unrolling
- change data layout
- add parallelism vectorization, multi-threading
- Prior work performs them by manually composing rewrite rules [ICFP 2020; CACM 2023]

Case Study: Program Optimization

Unguided Runtime and Memory Consumption

Case Study: Program Optimization

Guided Runtime and Memory Consumption

Case Study: Theorem Proving

- We implemented a ges tactic for the Lean theorem prover:

$$
\begin{array}{rlr}
\mathrm{g}^{-1-1} & =\mathrm{g}^{-1-1} *\left(\mathrm{~g}^{-1} * \mathrm{~g}\right) &
\end{array} \text { key } \quad \text { reasoning step }
$$

- Steps and details are omitted:

$$
\begin{aligned}
\left(g^{-1}\right)^{-1} & \xrightarrow{\text { mul. one }}\left(g^{-1}\right)^{-1} \cdot 1 \xrightarrow{\text { mul. inverse }}\left(g^{-1}\right)^{-1} \cdot\left(g^{-1} \cdot g\right) \\
& \xrightarrow{\text { mul. assoc. }}\left(\left(g^{-1}\right)^{-1} \cdot g^{-1}\right) \cdot g \xrightarrow{\text { mul. inverse }} 1 \cdot g \xrightarrow{\text { mul. one }} g
\end{aligned}
$$

Case Study: Theorem Proving

Proving Theorems on Rings of Characteristic 2*

$$
(x+y)^{2}=x^{2}+y^{2}
$$

$$
(x+y)^{3}=x^{3}+x \cdot y^{2}+x^{2} \cdot y+y
$$

$$
{ }^{*} 1+1=0, x+x=0
$$

Conclusion

- Guided Equality Saturation offers an effective trade-off between manual and automated rewriting
- For program optimization, guides resemble explanatory code snippets
- For theorem proving, guides resemble key reasoning steps from textbooks
- More details in our paper, supplementary material and open-source code!

Conclusion

- Guided Equality Saturation offers an effective trade-off between manual and automated rewriting
- For program optimization, guides resemble explanatory code snippets
- For theorem proving, guides resemble key reasoning steps from textbooks
- More details in our paper, supplementary material and open-source code!
, thomas.koehler@thok.eu
$\boldsymbol{\#}$ thok.eu

Thanks!

Sketches

- Sketches are program patterns that leave details unspecified

baseline sketch:

- Abstractions defined in terms of smaller building blocks:

```
def containsAddMul: Sketch =
    contains(app(app(+, ?), contains(×)))
```


Sketches

- Sketches are program patterns that leave details unspecified
baseline sketch:

containsMap(m, containsMap $(n$, containsReduceSeq $(k$, containsAddMul) $)$	for $m:$
for $k:$	
	$\ldots+\ldots \times \ldots$

- A sketch s is satisfied by a set of terms $R(s)$:

```
def containsAddMul: Sketch =
    contains(app(app(+, ?), contains(×)))
R(containsAddMul) = { R(app(app(+, ?), contains(×))) } U
    {F(th, .., t t ) | \existst i, \inR(containsAddMul) }
```


Sketches

- Sketches are program patterns that leave details unspecified

baseline sketch:

sketch guide:

how to split the loops before reordering them?

blocking sketch:

```containsMap(m, containsMap(n, containsReduceSeq(k, containsAddMul)))```	```for m: for n: for k: .. + .. X```
```containsMap(m / 32, containsMap(32, containsMap(n / 32, containsMap(32, containsReduceSeq(k / 4, containsReduceSeq(4, containsAddMul))))))```	```for m / 32: for 32: for n / 32: for 32: for k / 4: for 4:```


containsMap(m/32,	for $m / 32$:
containsMap(n/32,	for $\mathrm{n} / 32$:
containsReduceSeq(k / 4,	for $k / 4$:
containsReduceSeq(4,	for 4:
containsMap(32,	for 32:
containsMap(32,	for 32:
containsAddMul)))))	+ . \times

Sketch Definition

```
S ::= ?| F (S,..,S)| contains(S)
```

$$
\begin{aligned}
R(?) & =T=\left\{F\left(t_{1}, . ., t_{n}\right)\right\} \\
R\left(F\left(s_{1}, . ., s_{n}\right)\right) & =\left\{F\left(t_{1}, . ., t_{n}\right) \mid t_{i} \in R\left(s_{i}\right)\right\} \\
R(\operatorname{contains}(s)) & =R(s) \cup\left\{F\left(t_{1}, . ., t_{n}\right) \mid \exists t_{i} \in R(\operatorname{contains}(s))\right\}
\end{aligned}
$$

```
def containsMap(n: NatSketch, f: Sketch): Sketch =
    contains(app(map :: ?t }->\mathrm{ n.?dt }->\mathrm{ ?y, f))
def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
    contains(app(reduceSeq :: ?t }->\mathrm{ ?t }->\textrm{n}.?\textrm{dt}->\mathrm{ ?t, f))
def containsAddMul: Sketch =
    contains(app(app(+, ?), contains(×)))
```


Rewritten Language

- Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

```
def mm a b =
    map (\lambdaaRow.
        map ( }\lambda\textrm{bCol
            dot aRow bCol)
            (transpose b)) a
def dot xs ys =
    reduce + © | for ( }x,y\mathrm{ ) in zip( }xs,ys)
        (map (\lambda(x,y). x < y) | acc += x > y
            (zip xs ys))
```


Sketches vs Full Program

goal	sketch guides	sketch goal	sketch sizes	program size
blocking	split	reorder $_{1}$	7	90
vectorization	split + reorder ${ }_{1}$	lower $_{1}$	7	124
loop-perm	split + reorder ${ }_{2}$	lower $_{2}$	7	104
array-packing	split + reorder ${ }_{2}$ + store	lower $_{3}$	7-12	121
cache-blocks	split + reorder ${ }_{2}$ + store	lower $_{4}$	7-12	121
parallel	split + reorder ${ }_{2}$ + store	lower $_{5}$	7-12	121

- each sketch corresponds to a logical transformation step
- sketches elide around 90% of the program
- intricate details such as array reshaping patterns are not specified (e.g. split, join, transpose)

Difficulty 1. Long Rewrite Sequences

map (λ aRow.	for m:	
map ($\lambda \mathrm{bCol}$.	I for n :	
dot aRow bCol)	l for k :	$\mapsto{ }^{*}$
(transpose b)) a		

Prior work (not shortest path):


```
join (map (map join) (map transpose
    map | for m / 32:
        (map \lambda\times2. | for n / 32
        reduceSeq ( }\lambda\times3.\lambda\times4.\quad| for k / 4
        reduceSeq }\lambda\times5.\lambda\times6
                map
            for 32:
                                    for 32:
                                    map (\lambda\times7. (fst <7) + (fst (snd x f)) }
                                    (snd (snd x7)))
                                    (map (\lambda\times7. zip (fst x7) (snd x7))
                                    (zip x5 x6)))
            (transpose (map transpose
            (snd (unzip (map unzip map ( }\lambda\times5
                    zip (fst x5) (snd x5))
                    (zip x3 x4)))))))
                (generate ( }\lambda\times3.\mathrm{ generate ( }\lambda\times4.0))
        transpose (map transpose x2))
    (map (map (map (map (split 4))))
        (map transpose
        (map (map ( }\lambda\times2. map (map (zip x2)
            (split 32 (transpose b)))))
                split 32 a))))))
```


Difficulty 2. Explosive Combinations of Rewrite Rules

Two example rules that quickly generate many possibilities:

Handwritten Matrix Multiplication

```
for (int im = 0; im < m; im++) {
    for (int in = 0; in < n; in++) {
    float acc = 0.0f;
    for (int ik = 0; ik < k; ik++) {
        acc += a[ik + (k * im)] * b[in + (n * ik)];
        }
        output[in + (n * im)] = acc;
    }
}
```

Optimised program on the right:
$+110 \times$ faster runtime
Intel i5-4670K CPU

- $6 \times$ more lines of code where things can go wrong
threads, SIMD, index computations
- hardware specific (not portable)

```
float at[n+k]tilil
#pragma omp
for (int in =0; in<<(n/32); in =1, in) {
    #pragma omp simd
        lol
    },}\mp@subsup{}}{}{aT
#pragma omp parallel for
Mpragma omp parallel for 
    for (int in =0; in
    for(int jm= 0; jm < 32; jm=1+jm) {
        for(int jn=0;jn < 32;jn =1+jm){
        tmp1[jn+(32**jm)] = %.0f;
    }
    for (int ik =0;ik<(k/4); ik =1 +ik) {
        for (int jm =0, jm < 32; jm = 1 + jm) {
            for (int jn =0; jn < 32;jn=1 + jn) {
            for(int jn =0; jn< 32;jn=11+ jn)
            #pragma omp simd
            for (int jn =0;jn\mp@code{32; jn =1 +jn) f}
            tmp2[jn] += (a[((4*ik)*((32*im)*k)) + (jm*k)] * at[((4*ik) + ((32*in) *k)) + (jn*k)]);
            #pragma omp simd
            for (int jn = 0;jn< < 22; jn = 1 + jn) {
                tmp2[jn]+=(a[((1)+(4*ik))+((32*im)**))*(jm*k)]*
            #pragma omp simd
            #,
                tmp2[jn]+=(a[((2+(4* ik))+((32**im)*k))+(jmm
            #pragma omp simd
```



```
                tmp[jn]+=(a[((3++(4**ik))+((32** im)*k))+(jmm
            for (int jn = 0; jn< 32; jn=1+jn) {
            tmp1[jn + (32 * jm)] = tmp2[jn];
    },
    for (int jm=0; jm<32;jm=1+jm){
        or(int jn = 0; jn<<32; jn = 1 * jn){, in)) +(jm * n)] = tmp1[jn + (32* jm)];
},}
```

