
Guided Equality Saturation

Thomas Kœhler Andrés Goens Siddharth Bhat Tobias Grosser
Phil Trinder Michel Steuwer

POPL Conference — London, January 2024



The Limits of Greedy Term Rewriting
Example: Eliminating Intermediate Memory with Fusion

Program to Optimize:

(map (map f)) ◦ (transpose ◦ (map (map g)))

Rewrite Rules:
 
(1) map a ◦ map b ↦ map (a ◦ b) 

uses less memory local optimum,
cannot use less memory?

Guided Equality Saturation 1



The Limits of Greedy Term Rewriting
Example: Eliminating Intermediate Memory with Fusion

Program to Optimize:

(map (map f)) ◦ (transpose ◦ (map (map g)))

((map (map f)) ◦ (map (map g))) ◦ transpose

(map (map (f ◦ g))) ◦ transpose

Rewrite Rules:
 
(1) map a ◦ map b ↦ map (a ◦ b) 

(2); (3)

(1); (1)

global optimum,
uses less memory!

no effect on memory

uses less memory

(2) transpose ◦ map (map a) ↦ map (map a) ◦ transpose
(3) a ◦ (b ◦ c) ↦ (a ◦ b) ◦ c

not explored by greedy rewriting:

Guided Equality Saturation 2



Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

(map (map f)) ◦ (transpose ◦ (map (map g)))

∘

∘map

map map

mapf

g

transpose

 

initialize equivalence graph
                        a.k.a. e-graph

Guided Equality Saturation 3



Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

(map (map f)) ◦ (transpose ◦ (map (map g)))

 

transpose ◦ map (map g)
   =

map (map g) ◦ transpose

(2)

∘

∘map

map map

mapf

g

transpose

∘

∘map

map map

mapf

g

transpose

∘

 

records equivalence

Guided Equality Saturation 4



Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

(map (map f)) ◦ (transpose ◦ (map (map g)))

(2) (3); (1); (1)

∘

∘map

map map

mapf

g

transpose

∘

∘map

map map

mapf

g

transpose

∘

∘

∘map

map map

mapf

g

transpose

∘

∘ ∘ map

∘ map

∘ 

 

efficiently represents equivalent terms

Guided Equality Saturation 5



Equality Saturation
Example: Eliminating Intermediate Memory with Fusion

∘

∘map

map map

mapf

g

transpose

∘

∘ ∘ map

∘ map

∘ 

extract term minimizing  
memory usage 

(map (map f)) ◦ (transpose ◦ (map (map g)))

global optimum,
found by equality saturation [Tate et al. 2009; Willsey et al. 2021]

(map (map (f ◦ g))) ◦ transpose

Guided Equality Saturation 6



The Limits of Equality Saturation
Example: Improving Memory Access Patterns with Tiling

1D Tiling:

(1),(2),(3) + (4) map n1 (map n2 f) ↦ transpose ◦ (map n2 (map n1 f)) ◦ transpose
(5) map (n1 × n2) f ↦ join ◦ (map n1 (map n2 f)) ◦ (split n2)
 

map (n1 × 32) f

join ◦ (map n1 (map 32 f)) ◦ (split 32)

easy!

1 iteration =
apply rules breadth-first

Memory Footprint (bytes):

Guided Equality Saturation 7



The Limits of Equality Saturation
Example: Improving Memory Access Patterns with Tiling

2D Tiling:

(1),(2),(3) + (4) map n1 (map n2 f) ↦ transpose ◦ (map n2 (map n1 f)) ◦ transpose
(5) map (n1 × n2) f ↦ join ◦ (map n1 (map n2 f)) ◦ (split n2)
 

map (n1 × 32) (map (n2 × 32) f)

more challenging ...

join ◦ (map n1 (map 32 join)) ◦ (map n1 transpose) ◦
(map n1 (map n2 (map 32 (map 32 f)))) ◦
(map n1 transpose) ◦ (map n1 (map 32 (split 32))) ◦ (split 32)

Memory Footprint (bytes):

Guided Equality Saturation 8



The Limits of Equality Saturation
Example: Improving Memory Access Patterns with Tiling

map (n1 × 32) (map (n2 × 32) (map (n3 × 32) f))

unreachable with 8 Gb!

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 transpose ◦ (map n2 (map 32 transpose) ◦ transpose)) ◦
(map n1 (map n2 (map n3 (map 32 (map 32 (map 32 f)))))) ◦
(map n1 (map n2 transpose)) ◦ (map n1 (map n2 (map 32 transpose)) ◦ transpose) ◦ 
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

3D Tiling:

(1),(2),(3) + (4) map n1 (map n2 f) ↦ transpose ◦ (map n2 (map n1 f)) ◦ transpose
(5) map (n1 × n2) f ↦ join ◦ (map n1 (map n2 f)) ◦ (split n2)
 

Memory Footprint (bytes):

extreme e-graph growth

Guided Equality Saturation 9



Guided Equality Saturation

final goalstart

equality saturation

final goal

✘✘
out of resources

unguided:

Guided Equality Saturation 10



Guided Equality Saturation

intermediate goal final goalstart

guided:
equality saturation

final goal

equality saturation equality saturation

intermediate goal

final goalstart

equality saturation

final goal

✔ ✔ ✔

✘✘
out of resources

unguided:

expert

provides guides

Guided Equality Saturation 11



Guided Equality Saturation
Example: Improving Memory Access Patterns with Tiling (3D)

map (n1 × 32) (map (n2 × 32) (map (n3 × 32) f))

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 (map 32 (map n2 (map 32 (map n3 (map 32 f)))))) ◦
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

guide provides insight

1. split the loops

2. reorder them

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 transpose ◦ (map n2 (map 32 transpose) ◦ transpose)) ◦
(map n1 (map n2 (map n3 (map 32 (map 32 (map 32 f)))))) ◦
(map n1 (map n2 transpose)) ◦ (map n1 (map n2 (map 32 transpose)) ◦ transpose) ◦ 
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

Guided Equality Saturation 12



Guided Equality Saturation
Example: Improving Memory Access Patterns with Tiling (3D)

map (n1 × 32) (map (n2 × 32) (map (n3 × 32) f))

guide is more or less
precise sketch

1. split the loops

2. reorder them

(map (n1 × 32) (map (n2 × 32) join) ◦ join) ◦ join ◦
(map n1 transpose ◦ (map n2 (map 32 transpose) ◦ transpose)) ◦
(map n1 (map n2 (map n3 (map 32 (map 32 (map 32 f)))))) ◦
(map n1 (map n2 transpose)) ◦ (map n1 (map n2 (map 32 transpose)) ◦ transpose) ◦ 
(split 32) ◦ (map (n1 × 32) (map n2 (map 32 (split 32))) ◦ (split 32))

(contains
(map n1 (map 32 (map n2 (map 32 (map n3 (map 32 f))))))
)

Guided Equality Saturation 13



Guided Equality Saturation
Example: Improving Memory Access Patterns with Tiling (3D)
m
em

or
y
fo
ot
pr
in
t(
by

te
s)

1 2 3 4 5 6 7 8 ✗

iterations

107

108

109

1010 8Gb

memory
estimate

(a) Equality saturation (found: ✗)

1 2 3 4 5 6 7 ✓
iterations

107

108

109

1010 8Gb

1 2 3 4 5 6 ✓
iterations

107

108

109

1010 8Gb

(b) Guided equality saturation (found: ✓)

▶ A single guide makes 3D Tiling reachable with 8Gb!

Guided Equality Saturation 14



Case Study: Program Optimization

▶ We reproduced Matrix Multiplication optimizations from TVM:
https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html

▶ transform loops blocking, permutation, unrolling
▶ change data layout
▶ add parallelism vectorization, multi-threading

▶ Prior work performs them by manually composing rewrite rules [ICFP 2020; CACM 2023]

Guided Equality Saturation 15

https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html


Case Study: Program Optimization
Unguided Runtime and Memory Consumption

5 goals are too hard to find with
unguided equality saturation

Guided Equality Saturation 16



Case Study: Program Optimization
Guided Runtime and Memory Consumption

582x faster 116x less

All found with up to 3 guides,
eliding 90% of the complete program

Guided Equality Saturation 17



Case Study: Theorem Proving

▶ We implemented a ges tactic for the Lean theorem prover:
key
reasoning step

▶ Steps and details are omitted:

(g−1)−1 mul. one−−−−−−−→ (g−1)−1 · 1 mul. inverse−−−−−−−−−−→ (g−1)−1 · (g−1 · g)
mul. assoc.−−−−−−−−−→ ((g−1)−1 · g−1) · g mul. inverse−−−−−−−−−−→ 1 · g mul. one−−−−−−−→ g

Guided Equality Saturation 18



Case Study: Theorem Proving
Proving Theorems on Rings of Characteristic 2∗

(x + y)2 = x2 + y2

negligible overhead

~4mn

~480x faster

<1s

(x + y)3 = x3 + x · y2 + x2 · y + y

>20mn

<1s

1 good guide is enough

∗1 + 1 = 0, x + x = 0

Guided Equality Saturation 19



Conclusion

▶ Guided Equality Saturation offers an effective trade-off between manual and
automated rewriting

▶ For program optimization, guides resemble explanatory code snippets
▶ For theorem proving, guides resemble key reasoning steps from textbooks
▶ More details in our paper, supplementary material and open-source code!

# thomas.koehler@thok.eu
� thok.eu Thanks!

Guided Equality Saturation 20

thok.eu


Conclusion

▶ Guided Equality Saturation offers an effective trade-off between manual and
automated rewriting

▶ For program optimization, guides resemble explanatory code snippets
▶ For theorem proving, guides resemble key reasoning steps from textbooks
▶ More details in our paper, supplementary material and open-source code!

# thomas.koehler@thok.eu
� thok.eu Thanks!

Guided Equality Saturation 21

thok.eu


Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Guided Equality Saturation 22



Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ A sketch s is satisfied by a set of terms R(s):

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

R(containsAddMul) = { R(app(app(+, ?), contains(×))) } ∪
{ F(t1, .., tn) | ∃ti ∈ R(containsAddMul) }

R(app(app(+, ?), contains(×))) = { app(app(+, t1), t2) | t2 ∈ R(contains(×)) }
R(contains(×)) = { × } ∪ { F(t1, .., tn) | ∃ti ∈ R(contains(×)) }

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Guided Equality Saturation 23



Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

Guided Equality Saturation 24



Sketch Definition
S ::= ? | F (S, .., S) | contains(S)

R(?) = T = {F (t1, .., tn)}
R(F (s1, .., sn)) = {F (t1, .., tn) | ti ∈ R(si)}
R(contains(s)) = R(s) ∪ {F (t1, .., tn) | ∃ti ∈ R(contains(s))}

def containsMap(n: NatSketch, f: Sketch): Sketch =
contains(app(map :: ?t → n.?dt → ?y, f))

def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

Guided Equality Saturation 25



Rewritten Language

▶ Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

def mm a b =
map (_aRow. | for aRow in a:

map (_bCol. | for bCol in transpose(b):
dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (_(x, y). x × y) | acc += x × y
(zip xs ys))

Guided Equality Saturation 26



Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)

Guided Equality Saturation 27



Difficulty 1. Long Rewrite Sequences

map (_aRow. | for m:
map (_bCol. | for n:
dot aRow bCol) | for k:
(transpose b)) a | ...

7→∗

Prior work (not shortest path):

join (map (map join) (map transpose
map | for m / 32:

(map _x2. | for n / 32:
reduceSeq (_x3. _x4. | for k / 4:

reduceSeq _x5. _x6. | for 4:
map | for 32:
(map (_x7. | for 32:
(fst x7) + (fst (snd x7)) ×

(snd (snd x7)))
(map (_x7. zip (fst x7) (snd x7))

(zip x5 x6)))
(transpose (map transpose
(snd (unzip (map unzip map (_x5.

zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (_x3. generate (_x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose

(map (map (_x2. map (map (zip x2)
(split 32 (transpose b)))))

split 32 a))))))

Guided Equality Saturation 28



Difficulty 2. Explosive Combinations of Rewrite Rules
Two example rules that quickly generate many possibilities:

split-join:

map f x | for m:
| ... = f(...)

7→
join

(map | for m / n:
(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
7→

transpose
(map | for n:

(map f) | for m:
(transpose x)) | ... = f(...)

Guided Equality Saturation 29



Handwritten Matrix Multiplication
for (int im = 0; im < m; im++) {

for (int in = 0; in < n; in++) {
float acc = 0.0f;
for (int ik = 0; ik < k; ik++) {
acc += a[ik + (k * im)] * b[in + (n * ik)];

}

output[in + (n * im)] = acc;
}

}

Optimised program on the right:
+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines of code where things
can go wrong
threads, SIMD, index computations

- hardware specific (not portable)

float aT[n * k];
#pragma omp parallel for
for (int in = 0; in < (n / 32); in = 1 + in) {

for (int ik = 0; ik < k; ik = 1 + ik) {
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
}

}
}
#pragma omp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {

for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];
for (int jm = 0; jm < 32; jm = 1 + jm) {
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp1[jn + (32 * jm)] = 0.0f;
}

}
for (int ik = 0; ik < (k / 4); ik = 1 + ik) {
for (int jm = 0; jm < 32; jm = 1 + jm) {

float tmp2[32];
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] = tmp1[jn + (32 * jm)];

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((4 * ik) + ((32 * im) * k)) + (jm * k)] * aT[((4 * ik) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((1 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *

aT[((1 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);
}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((2 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *

aT[((2 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);
}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((3 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *

aT[((3 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);
}
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp1[jn + (32 * jm)] = tmp2[jn];

}
}

}
for (int jm = 0; jm < 32; jm = 1 + jm) {
for (int jn = 0; jn < 32; jn = 1 + jn) {

output[((jn + ((32 * im) * n)) + (32 * in)) + (jm * n)] = tmp1[jn + (32 * jm)];
}

}
}

}

Guided Equality Saturation 30


