
Sketch-Guided Program Optimisation

Thomas KœhleR Phil TRindeR Michel SteuweR

Saarland University — April 2022

Program Optimisation

▶ program optimisation is critical in performance-demanding domains
e.g. image processing, physics simulation, machine learning

▶ typically leads to order of magnitudes performance improvements
▶ hand optimisation takes months and risks introducing bugs in low level languages

e.g. C, OpenCL, CUDA

Sketch-Guided Program Optimisation 1

Example: Matrix Multiplication
for (int im = 0; im < m; im++) {

for (int in = 0; in < n; in++) {
float acc = 0.0f;
for (int ik = 0; ik < k; ik++) {
acc += a[ik + (k * im)] * b[in + (n * ik)];

}

output[in + (n * im)] = acc;
}

}

Optimised program on the right:
+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines of code where things
can go wrong
threads, SIMD, index computations

- hardware specific (not portable)

float aT[n * k];
#pragma omp parallel for
for (int in = 0; in < (n / 32); in = 1 + in) {

for (int ik = 0; ik < k; ik = 1 + ik) {
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
}

}
}
#pragma omp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {

for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp1[jn + (32 * jm)] = 0.0f;

}
}
for (int ik = 0; ik < (k / 4); ik = 1 + ik) {

for (int jm = 0; jm < 32; jm = 1 + jm) {
float tmp2[32];
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] = tmp1[jn + (32 * jm)];

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((4 * ik) + ((32 * im) * k)) + (jm * k)] * aT[((4 * ik) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((1 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((1 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((2 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((2 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((3 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((3 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp1[jn + (32 * jm)] = tmp2[jn];
}

}
}
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
output[((jn + ((32 * im) * n)) + (32 * in)) + (jm * n)] = tmp1[jn + (32 * jm)];

}
}

}
}

Sketch-Guided Program Optimisation 2

How can we automate the optimisation process?

Sketch-Guided Program Optimisation 3

Optimisation via Term Rewriting
high-performance

code
domain-specific
languages

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINE compiler

language

+ convenient, hardware agnostic programming
+ high-performance code generation
+ extensible set of abstractions and optimisations

Sketch-Guided Program Optimisation 4

The RISE language

▶ anonymous functions: 𝜆x. e

▶ function application: f e

▶ identifiers
▶ literals
▶ data-parallel patterns over multi-dimensional arrays:

▶ map f a = [f(a1), . . . , f(an)]
▶ reduce + i a = i + a1 + · · · + an
▶ split, join, transpose, zip, unzip reshape arrays in various ways
▶ …

Sketch-Guided Program Optimisation 5

Example: Matrix Multiplication Blocking
1 map 1 (𝜆aRow.
2 map 2 (𝜆bCol.
3 dot 3 aRow bCol)
4 (transpose b)) a
5
6 def dot a b = reduce + 0
7 (map (𝜆y. (fst y) × (snd y))
8 (zip a b))

7→∗

for m 1 :
for n 2 :
for k 3 :
..

7→∗
for m / 32 a :
for n / 32 b :
for k / 4 c :
for 4 d :
for 32 e :
for 32 f :
..

1 join (map (map join) (map transpose
2 map a (map b 𝜆x2.
3 reduceSeq c (𝜆x3. 𝜆x4.
4 reduceSeq d (𝜆x5. 𝜆x6.
5 map e (map f (𝜆x7. (fst x7) +
6 (fst (snd x7)) ×
7 (snd (snd x7)))
8 (map (𝜆x7. zip (fst x7) (snd x7))
9 (zip x5 x6)))

10 (transpose (map transpose
11 (snd (unzip (map unzip map (𝜆x5.
12 zip (fst x5) (snd x5))
13 (zip x3 x4)))))))
14 (generate (𝜆x3. generate (𝜆x4. 0)))
15 transpose (map transpose x2))
16 (map (map (map (map (split 4))))
17 (map transpose
18 (map (map (𝜆x2. map (map (zip x2)
19 (split 32 (transpose b)))))
20 split 32 a))))))

Sketch-Guided Program Optimisation 6

How do we decide which rewrite rules to apply?

Sketch-Guided Program Optimisation 7

Rewriting Strategies

▶ programmers describe optimisations as compositions of rewrite rules
▶ MM blocking: 1 def blocking = (baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

+ empowers programmers to manually control the rewrite process
+ tile, split, reorder are not built-in but programmer-defined

- transformed program is hidden state that needs to be reasoned about

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.
“Achieving high-performance the functional way: a functional pearl on expressing high-performance
optimizations as rewrite strategies”. In: ICFP (2020)

Sketch-Guided Program Optimisation 8

Rewriting Strategies

▶ programmers describe optimisations as compositions of rewrite rules
▶ MM blocking: 1 def blocking = (baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

- requires programmers to order all rewrite steps deterministically
- strategies are often program-specific and complex to implement
- transformed program is hidden state that needs to be reasoned about

Hagedorn, Lenfers, Koehler, Qin, Gorlatch, and Steuwer, “Achieving high-performance the functional way: a
functional pearl on expressing high-performance optimizations as rewrite strategies”

Sketch-Guided Program Optimisation 8

Sketch-Guided Program Optimisation
Observation:

▶ the shape of the optimised program is often used to explain optimisations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Key Insight:

▶ explanatory shapes can be formalized as sketches and used to guide a search
▶ replaces step-by-step rewriting strategies with declarative goals

Sketch-Guided Program Optimisation 9

Sketch-Guided Program Optimisation
Observation:

▶ the shape of the optimised program is often used to explain optimisations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Key Insight:

▶ explanatory shapes can be formalized as sketches and used to guide a search
▶ replaces step-by-step rewriting strategies with declarative goals

Sketch-Guided Program Optimisation 9

Sketch-Guided Program Optimisation
Sketches

▶ sketches are program patterns that leave details unspecified
▶ MM blocking:

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. * ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. * ..

Sketch-Guided Program Optimisation 10

Sketch-Guided Program Optimisation
Search

Challenge:
▶ automatically find a program that

1. satisfies the sketch
2. is equivalent to the unoptimised program

▶ by exploring many different ways to apply semantic-preserving rewrite rules

To do this efficiently, we look at Equality Saturation

Sketch-Guided Program Optimisation 11

Sketch-Guided Program Optimisation
Search

Challenge:
▶ automatically find a program that

1. satisfies the sketch
2. is equivalent to the unoptimised program

▶ by exploring many different ways to apply semantic-preserving rewrite rules

To do this efficiently, we look at Equality Saturation

Sketch-Guided Program Optimisation 11

Equality Saturation

input
term

e-graphinitialize

apply

extract

costminimizingrules

final
term

▶ An e-graph efficiently represents a large set of equivalent programs.
▶ The e-graph is grown by applying all possible rewrite rules in a purely additive way.
▶ After growing the e-graph, the best program found is extracted.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. “Equality saturation: a new approach to
optimization”. In: POPL. 2009
Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
“egg: fast and extensible equality saturation”. In: POPL (2021)

Sketch-Guided Program Optimisation 12

Equality Saturation
E-Graph Example

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

Sketch-Guided Program Optimisation 13

Equality Saturation

input
term

sketchsatisfying

e-graphinitialize

apply

extract

costminimizing
+

rules

final
term

Questions:
1. How do we implement a sketch-satisfying extraction procedure?
2. How does it work for functional RISE programs?

▶ no efficient support for name bindings, rewritten languages are usually first order
3. Does it scale to complex optimisations?

▶ as the e-graph grows, iterations become slower and require more memory

Sketch-Guided Program Optimisation 14

Equality Saturation

input
term

sketchsatisfying

e-graphinitialize

apply

extract

costminimizing
+

rules

final
term

Focus in this talk:

1. How do we implement a sketch-satisfying extraction procedure?
2. How does it work for functional RISE programs?

▶ no efficient support for name bindings, rewritten languages are usually first order

3. Does it scale to complex optimisations?
▶ as the e-graph grows, iterations become slower and require more memory

Sketch-Guided Program Optimisation 14

Sketch-Guided Equality Saturation

programmer

term1

rules1

search1

cost1

sketch1

rulesN

searchN

costN

sketchN

termN

rulesN+1

searchN+1

costN+1

sketchN+1guides goalprovides

termN+1term0

▶ factors a complex search into a sequence of smaller searches
▶ additional sketch guides specify intermediate goals
▶ each search should be sufficiently simple for equality saturation

Sketch-Guided Program Optimisation 15

Sketch-Guided Equality Saturation
MM Blocking

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. * ..

sketch guide:
how to split the loops?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. * ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. * ..

Sketch-Guided Program Optimisation 16

Evaluation
Search Runtime and Memory Consumption

▶ 7 matrix multiplication optimisation goals
▶ Equality Saturation without Sketch Guides1:

goal found? runtime RAM
baseline 3 0.5s 0.02 GB
blocking 3 >1h 35 GB
+ 5 others 7 >1h >60 GB

▶ Sketch-Guided Equality Saturation2:
goal sketch guides found? runtime RAM
baseline 0 3 0.5s 0.02 GB
blocking 1 3 7s 0.3 GB
+ 5 others 2-3 3 ≤7s ≤0.5 GB

1Intel Xeon E5-2640 v2
2AMD Ryzen 5 PRO 2500U

Sketch-Guided Program Optimisation 17

Evaluation
E-Graph Evolution

0 5 10 15 20
iterations

0M

1M

2M

3M

4M

(a) unguided, blocking, found: 3

0 5 10 15 20
iterations

0M

1M

2M

3M

4M

out of memory e-nodes
e-classes
rules
estimate

(b) unguided, parallel, found: 7

0 5 10 15 20
iterations

0K

2K

5K

7K

10K
11K sketch

guide
n°1

(c) sketch-guided, blocking, found: 3

0 5 10 15 20
iterations

0K

2K

5K

7K

10K sketch
guide
n°1

sketch
guide
n°2

sketch
guide
n°3

(d) sketch-guided, parallel, found: 3

Sketch-Guided Program Optimisation 18

Evaluation
Sketch Guides

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)

Sketch-Guided Program Optimisation 19

Conclusion
We propose:
▶ sketches to guide optimisation, alternative to step-by-step rewriting strategies
▶ sketch-guided equality saturation, a novel, semi-automatic optimisation technique

Future work:
▶ design effective sketch guides for more diverse applications
▶ synthesize sketch guides from a sketch goal
▶ use in an interactive optimisation assistant

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

paper: https://arxiv.org/abs/2111.13040

Sketch-Guided Program Optimisation 20

thok.eu
rise-lang.org
elevate-lang.org
https://arxiv.org/abs/2111.13040

Conclusion
We propose:
▶ sketches to guide optimisation, alternative to step-by-step rewriting strategies
▶ sketch-guided equality saturation, a novel, semi-automatic optimisation technique

Future work:
▶ design effective sketch guides for more diverse applications
▶ synthesize sketch guides from a sketch goal
▶ use in an interactive optimisation assistant

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

paper: https://arxiv.org/abs/2111.13040

Sketch-Guided Program Optimisation 20

thok.eu
rise-lang.org
elevate-lang.org
https://arxiv.org/abs/2111.13040

Deciding How to Apply Rewrite Rules

e.g. heuristic search,
 equality saturation, ...

e.g. Halide/TVM schedules,
 Elevate strategies, ...

Sketch-Guided Program Optimisation 21

Sketch Definition
S ::= ? | F(S, .., S) | contains(S)

R(?) = T = {F(t1, .., tn)}
R(F(s1, .., sn)) = {F(t1, .., tn) | ti ∈ R(si)}

R(contains(s)) = R(s) ∪ {F(t1, .., tn) | ∃ti ∈ R(contains(s))}

def containsMap(n: NatSketch, f: Sketch): Sketch =
contains(app(map :: ?t → n.?dt → ?y, f))

def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

Sketch-Guided Program Optimisation 22

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimisation 23

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimisation 23

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimisation 23

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Program Optimisation 23

