
Sketch-Guided Equality Saturation

Thomas KœhleR Phil TRindeR Michel SteuweR

Shameless PLUG Seminar — February 2022

The Optimizing Compiler Challenge

high-performance
code

domain-specific
languages

optimizing compiler(s) target
hardware

for

some Intel CPU

some NVIDIA GPU

other cool processor

image processing

deep learning

other cool domain

?
+ convenient, hardware agnostic programming
+ high-performance execution

Sketch-Guided Equality Saturation 1

Domain-Specific Compilers

high-performance
code

domain-specific
languages

optimizing compilers target
hardware

for

some Intel CPU

some NVIDIA GPU

other cool processor

image processing

deep learning

other cool domain

- fixed set of abstractions and optimizations
- need to design and maintain multiple compilers

Optimization decisions are encoded into a schedule

Sketch-Guided Equality Saturation 2

Schedules for Optimization

Halide algorithm: what to compute

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

Halide schedule: how to optimize

blur_y.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);

blur_x.compute_at(blur_y, x).vectorize(x, 8);

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. “Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines”. In: Acm Sigplan Notices (2013)

Sketch-Guided Equality Saturation 3

A Domain-Extensible Compiler
high-performance

code
domain-specific
languages

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINE compiler

language

+ extensible set of abstractions and optimizations

Optimization decisions are encoded via rewriting

Sketch-Guided Equality Saturation 4

Rewriting Strategies for Optimization

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

compiler

rewriting
strategy

performance engineer

language

language

provides

orchestrates high-performance
code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.
“Achieving high-performance the functional way: a functional pearl on expressing high-performance
optimizations as rewrite strategies”. In: ICFP (2020)

Sketch-Guided Equality Saturation 5

Rewriting Strategies vs Schedules

Advantages of rewriting strategies:
▶ 5 principles: separate concerns, facilitate reuse, enable composition, allow

reasoning, explicit by default
▶ in practice, rewriting strategies are a competitive alternative to schedules

matrix multiplication and corner detection case studies

But … both are difficult to write!
optimization strategy = schedule or rewriting strategy

Sketch-Guided Equality Saturation 6

Rewriting Strategies vs Schedules

Advantages of rewriting strategies:
▶ 5 principles: separate concerns, facilitate reuse, enable composition, allow

reasoning, explicit by default
▶ in practice, rewriting strategies are a competitive alternative to schedules

matrix multiplication and corner detection case studies

But … both are difficult to write!
optimization strategy = schedule or rewriting strategy

Sketch-Guided Equality Saturation 6

Optimization Strategies are Difficult to Write

Sketch-Guided Equality Saturation 7

Optimization Strategies are Difficult to Write

Sketch-Guided Equality Saturation 8

Optimization Strategies are Difficult to Write

▶ to write: which sequence of transformations lead to an optimized program?

input
program

optimized
program

▶ to read: what is the resulting program? what are the intermediate programs?

optimization
strategy

input
program

Transformed program is hidden state that needs to be reasoned about

Sketch-Guided Equality Saturation 9

Reasoning about Strategies with Program Shapes

Savvas Sioutas, Sander Stuijk, Twan Basten, Henk Corporaal, and Lou Somers. “Schedule synthesis for
halide pipelines on gpus”. In: TACO (2020)

Sketch-Guided Equality Saturation 10

Reasoning about Strategies with Program Shapes

Not only found in papers … but also in talks:

Sketch-Guided Equality Saturation 11

Reasoning about Strategies with Program Shapes

Thomas Koehler and Michel Steuwer. “Towards a Domain-Extensible Compiler: Optimizing an Image
Processing Pipeline on Mobile CPUs”. In: CGO. 2021

Sketch-Guided Equality Saturation 12

Sketches to Formalize Program Shapes

sketches = program patterns that leave details unspecified

S ::= ? | F(S, .., S) | contains(S)

R(?) = T = {F(t1, .., tn)}
R(F(s1, .., sn)) = {F(t1, .., tn) | ti ∈ R(si)}

R(contains(s)) = R(s) ∪ {F(t1, .., tn) | ∃ti ∈ R(contains(s))}

Basic sketch grammar (top) and the terms it represents (bottom)

Sketch-Guided Equality Saturation 13

Sketches to Formalize Program Shapes

sketches = program patterns that leave details unspecified

S ::= ? | F(S, .., S) | contains(S)

map(grayLine) ▷ slide(3, 1) ▷
map(sobelLine) ▷ slide(3, 1) ▷ map(coarsityLine)

contains(map(?) ▷ slide(3, 1) ▷
map(?) ▷ slide(3, 1) ▷ map(?))

Example informal program shape (middle) and possible sketch (bottom)

Sketch-Guided Equality Saturation 13

Sketches for Optimization

Why not use sketches to specify optimization goals?

▶ instead of writing optimization strategy, write desired program shape:

input
program

optimized
program

desired
sketch

search for

▶ instead of reading optimization strategy, read program shape:
optimized
program

desired
sketch∈ R()

Sketch-Guided Equality Saturation 14

Automated Search?

input
term

e-graphinitialize

apply

extract

costminimizingrules

final
term

Equality Saturation

▶ An e-graph efficiently represents a large set of equivalent programs.
▶ The e-graph is grown by applying all possible rewrite rules in a purely additive way.
▶ After growing the e-graph, the best program found is extracted.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. “Equality saturation: a new approach to
optimization”. In: POPL. 2009
Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
“egg: fast and extensible equality saturation”. In: POPL (2021)

Sketch-Guided Equality Saturation 15

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Equality Saturation 16

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Equality Saturation 16

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Equality Saturation 16

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

Sketch-Guided Equality Saturation 16

Equality Saturation with Sketches

input
term

performance engineer

sketchsatisfying

e-graphinitialize

apply

extract

costminimizing
+

provides

rules

final
term

Questions:
1. How does it work for functional programs like RISE?

▶ no efficient support for name bindings, rewritten languages are usually first order
2. Does it scale to complex optimizations of realistic programs?

▶ the search could be too costly

Sketch-Guided Equality Saturation 17

Equality Saturation for Functional Programs

Consider 2 standard 𝜆-calculus rules + 2 rules that introduce names on the right:

(𝜆x. b)e −→ b[e/x] (𝛽-reduction)
𝜆x. f x −→ f if x not free in f (𝜂-reduction)

map f (map g arg) −→ map (𝜆x. f (g x)) arg (map-fusion)
map (𝜆x. f gx) −→ 𝜆y. map f (map (𝜆x. gx) y) if x not free in f (map-fission)

How can we implement substitution, predicates and name bindings?

Sketch-Guided Equality Saturation 18

Equality Saturation for Functional Programs

▶ We made substitution much more efficient, at the cost of ignoring possibilities.
only substitute using one representative term by equivalence class

method time RAM e-nodes e-classes found
before 40s 4GB 13M 3M no
after <1ms MBs 364 277 yes

▶ State-of-the-art predicates are efficient but ignore possibilities.
predicate has to hold ∀ terms in equivalence class

▶ We made name bindings much more efficient using DeBruijn indices.
the goal is to avoid duplicating alpha-equivalent terms

method time RAM e-nodes e-classes found
before 2mn 4GB 2.9M 1.4M no
after 100ms MBs 3K 1K yes

Sketch-Guided Equality Saturation 19

Equality Saturation for Functional Programs

▶ We made substitution much more efficient, at the cost of ignoring possibilities.
discovering a rewrite goal requiring less than 10 rewrite rule applications:

method time RAM e-nodes e-classes found
before 40s 4GB 13M 3M no
after <1ms MBs 364 277 yes

▶ State-of-the-art predicates are efficient but ignore possibilities.
predicate has to hold ∀ terms in equivalence class

▶ We made name bindings much more efficient using DeBruijn indices.
discovering a rewrite goal requiring less than 50 rewrite rule applications:

method time RAM e-nodes e-classes found
before 2mn 4GB 2.9M 1.4M no
after 100ms MBs 3K 1K yes

Sketch-Guided Equality Saturation 19

Matrix Multiplication Case Study
Optimization Time and Memory Consumption

▶ ELEVATE strategies take ∼1s to execute, reproducing 7 optimizations from TVM.
▶ Equality Saturation with Sketches1:

version sketches found time RAM rules
baseline 1 yes 0.5s 20 MB 2
blocking 1 yes 1h+ 35GB 5M
+ 5 others 1 no ∼1h+ 60GB+ ⁇?

What else can we do to improve scaling?

1Intel Xeon E5-2640 v2

Sketch-Guided Equality Saturation 20

Matrix Multiplication Case Study
Optimization Time and Memory Consumption

▶ ELEVATE strategies take ∼1s to execute, reproducing 7 optimizations from TVM.
▶ Equality Saturation with Sketches1:

version sketches found time RAM rules
baseline 1 yes 0.5s 20 MB 2
blocking 1 yes 1h+ 35GB 5M
+ 5 others 1 no ∼1h+ 60GB+ ⁇?

What else can we do to improve scaling?

1Intel Xeon E5-2640 v2

Sketch-Guided Equality Saturation 20

Matrix Multiplication Case Study
Sketches

iteration order
2D blocking

(2D tiling)

baseline version:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. * ..

blocking version (3D):

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. * ..

Sketch-Guided Equality Saturation 21

Matrix Multiplication Case Study
Intermediate Sketches

baseline version:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. * ..

Intermediate sketch:
how to split the loops?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. * ..

blocking version (3D):

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. * ..

Sketch-Guided Equality Saturation 22

Sketch-Guided Equality Saturation

input
term

performance engineer

provides

term

rules1

search1

cost1

sketch1

final
term

rulesN

searchN

costN

sketchN

▶ decompose a complex search into a series of simpler searches
▶ additional sketches specify intermediate goals

Sketch-Guided Equality Saturation 23

Matrix Multiplication Case Study
Intermediate Sketches

version sketches
blocking split + reorder1
vectorization split + reorder1 + lower1
loop-perm split + reorder2 + lower2
array-packing split + reorder2 + store + lower3
cache-blocks split + reorder2 + store + lower4
parallel split + reorder2 + store + lower5

Decomposition of each version into logical steps. A sketch is defined for each logical step.

Sketch-Guided Equality Saturation 24

Matrix Multiplication Case Study
Optimization Time and Memory Consumption

▶ ELEVATE strategies take ∼1s to execute, reproducing 7 optimizations from TVM.
▶ Equality Saturation with Sketches2:

version sketches found time RAM rules
baseline 1 yes 0.5s 20 MB 2
blocking 1 yes 1h+ 35GB 5M
+ 5 others 1 no ∼1h+ 60GB+ ⁇?

▶ Sketch-Guided Equality Saturation3:
version sketches found time RAM rules
baseline 1 yes 0.5s 20 MB 2
blocking 2 yes 7s 0.3 GB 11K
+ 5 others 3-4 yes <7s <0.5 GB <11K

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

Sketch-Guided Equality Saturation 25

Conclusion

We propose:
▶ sketches for program optimization, alternative to optimization strategies
▶ practical techniques to support efficient equality saturation for lambda calculi
▶ sketch-guided equality saturation, a novel, semi-automatic optimization technique

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

paper: https://arxiv.org/abs/2111.13040

Sketch-Guided Equality Saturation 26

thok.eu
rise-lang.org
elevate-lang.org
https://arxiv.org/abs/2111.13040

Conclusion

We propose:
▶ sketches for program optimization, alternative to optimization strategies
▶ practical techniques to support efficient equality saturation for lambda calculi
▶ sketch-guided equality saturation, a novel, semi-automatic optimization technique

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

paper: https://arxiv.org/abs/2111.13040

Sketch-Guided Equality Saturation 26

thok.eu
rise-lang.org
elevate-lang.org
https://arxiv.org/abs/2111.13040

Deciding How to Apply Rewrite Rules

e.g. heuristic search,
 equality saturation, ...

e.g. Halide/TVM schedules,
 Elevate strategies, ...

Sketch-Guided Equality Saturation 27

