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Equality Saturation
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▶ Optimize programs by efficiently exploring many possible rewrites
▶ Many successful applications sparked from the recent egg library

Some optimizations remain out of reach as the e-graph grows too big
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Case Study
Matrix Multiplication Optimizations for CPU:

▶ transform loops
blocking, permutation, unrolling

▶ change data layout
▶ add parallelism

vectorization, multi-threading

Space of equivalent programs to consider is huge
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Case Study
▶ Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

def mm a b =
map (𝜆aRow. | for aRow in a:
map (𝜆bCol. | for bCol in transpose(b):

dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (𝜆(x, y). x × y) | acc += x × y

(zip xs ys))

RISE is designed for optimization via term rewriting
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Case Study

▶ Prior work optimizes MM in RISE using rewriting strategies
▶ manually control when to apply each rewrite rule
▶ talk by Michel Steuwer on Friday, 15h30 at Cockatoo

Great performance, but requires manual rewrite ordering
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Case Study

▶ Achieve the same 7 optimization goals with equality saturation?1
goal found? runtime RAM
baseline 3 0.5s 0.02 GB
blocking 3 >1h 35 GB
vectorization 7 >1h >60 GB
loop-perm 7 >1h >60 GB
array-packing 7 35mn >60 GB
cache-blocks 7 35mn >60 GB
parallel 7 35mn >60 GB

▶ Most goals are not found before exhausting 60 GB.
▶ For comparison, rewriting strategies take <2s and <1GB.

1on Intel Xeon E5-2640 v2

Sketch-Guided Equality Saturation 5



Case Study

▶ Achieve the same 7 optimization goals with equality saturation?1
goal found? runtime RAM
baseline 3 0.5s 0.02 GB
blocking 3 >1h 35 GB
vectorization 7 >1h >60 GB
loop-perm 7 >1h >60 GB
array-packing 7 35mn >60 GB
cache-blocks 7 35mn >60 GB
parallel 7 35mn >60 GB

Standard equality saturation does not scale to this optimization space

1on Intel Xeon E5-2640 v2
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E-Graph Evolution
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out of memory e-nodes
e-classes
rules
estimate

(b) parallel, found: 7

Two difficulties:
1. Long rewrite sequences =⇒ many iterations are required
2. Explosive combination of rewrite rules =⇒ exponential growth

▶ millions of e-nodes and e-classes in less than 10 iterations
▶ worse for parallel, memory is exhausted in the 7th iteration
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Difficulty 1. Long Rewrite Sequences

Prior work (not shortest path):
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Difficulty 2. Explosive Combinations of Rewrite Rules
Two example rules that quickly generate many possibilities:

split-join:

map f x | for m:
| ... = f(...)

7→
join
(map | for m / n:

(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
7→

transpose
(map | for n:

(map f) | for m:
(transpose x)) | ... = f(...)
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To overcome these difficulties, we came up with sketch-guided
equality saturation
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Sketch-Guided Equality Saturation
Observation:

▶ The shape of the optimised program is often used to explain optimizations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting
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Sketch-Guided Equality Saturation

programmer

term1

rules1

search1

cost1

sketch1

rulesN

searchN

costN

sketchN

termN

rulesN+1

searchN+1

costN+1

sketchN+1guides goalprovides

termN+1term0

▶ Factors an unfeasible search into a sequence of feasible ones:
1. Break long rewrite sequences
2. Isolate explosive combinations of rewrite rules
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Sketch-Satisfying Equality Saturation

termi-1

sketchisatisfying

e-graphinitialize

apply

extract

costiminimizing
+rulesi
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searchi

▶ Terminates as soon as a program satisfying the sketch is found
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Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..
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Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U
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E-Graph Evolution
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Evaluation
Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)
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Future Work

▶ Combine with precise control of rewriting strategies?
▶ equality saturation as a rewriting strategy

▶ other talk at 11h30: Equality Saturation as a Tactic for Proof Assistants
▶ using rewriting strategies or tactics inside equality saturation?

▶ More diverse applications and languages, maybe theorem proving?
▶ Focused growth? (rewrite rule scheduling, heuristics, pruning, etc)
▶ How to select effective sketch guides, sets of rules and cost models in general?
▶ More powerful sketch language, reusing sketches across diverse programs?
▶ Can we synthesize sketch guides from a sketch goal?
▶ Interactive optimization assistant?
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Conclusion

We propose:
▶ sketches to guide rewriting
▶ sketch-guided equality saturation, a novel, semi-automatic optimization technique

 https://arxiv.org/abs/2111.13040

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

Sketch-Guided Equality Saturation 18

https://arxiv.org/abs/2111.13040
thok.eu
rise-lang.org
elevate-lang.org


Conclusion

We propose:
▶ sketches to guide rewriting
▶ sketch-guided equality saturation, a novel, semi-automatic optimization technique

 https://arxiv.org/abs/2111.13040

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

Sketch-Guided Equality Saturation 18

https://arxiv.org/abs/2111.13040
thok.eu
rise-lang.org
elevate-lang.org


Sketch Definition
S ::= ? | F(S, .., S) | contains(S)

R(?) = T = {F(t1, .., tn)}
R(F(s1, .., sn)) = {F(t1, .., tn) | ti ∈ R(si)}

R(contains(s)) = R(s) ∪ {F(t1, .., tn) | ∃ti ∈ R(contains(s))}

def containsMap(n: NatSketch, f: Sketch): Sketch =
contains(app(map :: ?t → n.?dt → ?y, f))

def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))
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MM Blocking

map (𝜆aRow. | for m:
map (𝜆bCol. | for n:

dot aRow bCol) | for k:
(transpose b)) a | ...

7→∗

Prior work (not shortest path):

join (map (map join) (map transpose
map | for m / 32:
(map 𝜆x2. | for n / 32:

reduceSeq (𝜆x3. 𝜆x4. | for k / 4:
reduceSeq 𝜆x5. 𝜆x6. | for 4:

map | for 32:
(map (𝜆x7. | for 32:
(fst x7) + (fst (snd x7)) ×

(snd (snd x7)))
(map (𝜆x7. zip (fst x7) (snd x7))
(zip x5 x6)))

(transpose (map transpose
(snd (unzip (map unzip map (𝜆x5.

zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (𝜆x3. generate (𝜆x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose

(map (map (𝜆x2. map (map (zip x2)
(split 32 (transpose b)))))

split 32 a))))))
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Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
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Deciding How to Apply Rewrite Rules

e.g. heuristic search,
 equality saturation, ...

e.g. Halide/TVM schedules,
 Elevate strategies, ...
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Rewriting Strategies

▶ programmers describe optimizations as compositions of rewrite rules
▶ blocking: 1 def blocking = ( baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

+ empowers programmers to manually control the rewrite process
+ tile, split, reorder are not built-in but programmer-defined

- transformed program is hidden state that needs to be reasoned about

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.
“Achieving high-performance the functional way: a functional pearl on expressing high-performance
optimizations as rewrite strategies”. In: ICFP (2020)
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2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

- requires programmers to order all rewrite steps deterministically
- strategies are often program-specific and complex to implement
- transformed program is hidden state that needs to be reasoned about

Hagedorn, Lenfers, Koehler, Qin, Gorlatch, and Steuwer, “Achieving high-performance the functional way: a
functional pearl on expressing high-performance optimizations as rewrite strategies”
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Handwritten Matrix Multiplication
for (int im = 0; im < m; im++) {

for (int in = 0; in < n; in++) {
float acc = 0.0f;
for (int ik = 0; ik < k; ik++) {
acc += a[ik + (k * im)] * b[in + (n * ik)];

}

output[in + (n * im)] = acc;
}

}

Optimised program on the right:
+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines of code where things
can go wrong
threads, SIMD, index computations

- hardware specific (not portable)

float aT[n * k];
#pragma omp parallel for
for (int in = 0; in < (n / 32); in = 1 + in) {

for (int ik = 0; ik < k; ik = 1 + ik) {
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
}

}
}
#pragma omp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {

for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp1[jn + (32 * jm)] = 0.0f;

}
}
for (int ik = 0; ik < (k / 4); ik = 1 + ik) {

for (int jm = 0; jm < 32; jm = 1 + jm) {
float tmp2[32];
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] = tmp1[jn + (32 * jm)];

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((4 * ik) + ((32 * im) * k)) + (jm * k)] * aT[((4 * ik) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((1 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((1 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((2 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((2 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((3 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((3 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp1[jn + (32 * jm)] = tmp2[jn];
}

}
}
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
output[((jn + ((32 * im) * n)) + (32 * in)) + (jm * n)] = tmp1[jn + (32 * jm)];

}
}

}
}
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E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size
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