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Optimizing Low-Level Code is Hard

▶ hand optimization is time-consuming and error-prone
e.g. in C, OpenCL, CUDA

▶ critical in performance-demanding domains
e.g. image processing, numeric simulation, machine learning

▶ typically leads to orders of magnitude performance improvements

A Term Rewriting Path to High-Performance 1



Optimizing Matrix Multiplication in C
for (int im = 0; im < m; im++) {

for (int in = 0; in < n; in++) {
float acc = 0.0f;
for (int ik = 0; ik < k; ik++) {
acc += a[ik + (k * im)] * b[in + (n * ik)];

}

output[in + (n * im)] = acc;
}

}

Optimized program on the right:
+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines, more complex code
threads, SIMD, indexing

float aT[n * k];
#pragma omp parallel for
for (int in = 0; in < (n / 32); in = 1 + in) {

for (int ik = 0; ik < k; ik = 1 + ik) {
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
}

}
}
#pragma omp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {

for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp1[jn + (32 * jm)] = 0.0f;

}
}
for (int ik = 0; ik < (k / 4); ik = 1 + ik) {

for (int jm = 0; jm < 32; jm = 1 + jm) {
float tmp2[32];
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] = tmp1[jn + (32 * jm)];

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((4 * ik) + ((32 * im) * k)) + (jm * k)] * aT[((4 * ik) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((1 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((1 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((2 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((2 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((3 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((3 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp1[jn + (32 * jm)] = tmp2[jn];
}

}
}
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
output[((jn + ((32 * im) * n)) + (32 * in)) + (jm * n)] = tmp1[jn + (32 * jm)];

}
}

}
}
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Automating Optimization via Term Rewriting

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

+ convenient, hardware agnostic programming
+ high-performance code generation
+ extensible set of abstractions and optimizations
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RISE is a Functional Array Language

High-level matrix multiplication in RISE:

def mm a b =
map (𝜆aRow. | for aRow in a:
map (𝜆bCol. | for bCol in transpose(b):

dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (𝜆(x, y). x × y) | acc += x × y

(zip xs ys))
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Rewrite Rules Encode Valid RISE Transformations

split-join:

map f x | for m:
| ... = f(...)

7→
join
(map | for m / n:

(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
7→

transpose
(map | for n:

(map f) | for m:
(transpose x)) | ... = f(...)
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Complex Optimizations Emerge from Simple Rules
Matrix multiplication blocking in RISE:

map (𝜆aRow. | for m:
map (𝜆bCol. | for n:

dot aRow bCol) | for k:
(transpose b)) a | ...

7→∗
join (map (map join) (map transpose

map | for m / 32:
(map 𝜆x2. | for n / 32:

reduceSeq (𝜆x3. 𝜆x4. | for k / 4:
reduceSeq 𝜆x5. 𝜆x6. | for 4:

map | for 32:
(map (𝜆x7. | for 32:
(fst x7) + (fst (snd x7)) ×

(snd (snd x7)))
(map (𝜆x7. zip (fst x7) (snd x7))
(zip x5 x6)))

(transpose (map transpose
(snd (unzip (map unzip map (𝜆x5.

zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (𝜆x3. generate (𝜆x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose

(map (map (𝜆x2. map (map (zip x2)
(split 32 (transpose b)))))

split 32 a))))))
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Deciding which Rewrites to Apply is Hard

Equality Saturation

controlautomation

Sketch-Guided
Equality Saturation

Rewriting Strategies
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ELEVATE Rewriting Strategies

▶ programmers describe optimizations as compositions of rewrite rules
▶ MM blocking: 1 def blocking = ( baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

+ empowers programmers to manually control the rewrite process
+ to define their own abstractions: tile, split, reorder are not built-in

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.
“Achieving high-performance the functional way: a functional pearl on expressing high-performance
optimizations as rewrite strategies”. In: ICFP (2020)
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- requires programmers to order all rewrite steps
- strategies are often program-specific and tedious to implement

Hagedorn, Lenfers, Koehler, Qin, Gorlatch, and Steuwer, “Achieving high-performance the functional way: a
functional pearl on expressing high-performance optimizations as rewrite strategies”
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Achieving High-Performance with ELEVATE

Case Study 1) Matrix Multiplication Optimizations for Intel CPU

▶ Transform loops blocking, permutation, unrolling

▶ Change data layout array packing

▶ Add parallelism vectorization, multi-threading

▶ Performance is on par with reference schedules from TVM
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Achieving High-Performance with ELEVATE

Case Study 2) Harris Corner Detection Optimizations for ARM CPU

▶ 4 optimizations from reference Halide schedule
circular buffering, operator fusion, multi-threading, vectorization

▶ 2 optimizations not supported by Halide convolution separation, register rotation
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this work

Thomas Koehler and Michel Steuwer. “Towards a Domain-Extensible Compiler: Optimizing an Image
Processing Pipeline on Mobile CPUs”. In: CGO. 2021
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Rewriting strategies achieve high-performance, but
require tedious manual rewrite ordering
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Equality Saturation

input
term

e-graphinitialize

apply

extract

costminimizingrules 

final
term

▶ Optimize programs by efficiently exploring many possible rewrites
▶ Many successful applications sparked from the recent egg library

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
“egg: fast and extensible equality saturation”. In: POPL (2021)

No manual rewrite ordering, but does not scale to the RISE case studies
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Sketch-Guided Equality Saturation
Observation:

▶ The shape of the optimized program is often used to explain optimizations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting
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Sketch-Guided Equality Saturation

programmer

term1

rules1

search1

cost1

sketch1

rulesN

searchN

costN

sketchN

termN

rulesN+1

searchN+1

costN+1

sketchN+1guides goalprovides

termN+1term0

▶ Factors an unfeasible search into a sequence of feasible ones:
1. Break long rewrite sequences
2. Isolate explosive combinations of rewrite rules

 https://arxiv.org/abs/2111.13040
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Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..
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containsAddMul))) | .. + .. × ..

▶ A sketch s is satisfied by a set of terms R(s):
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Impact of Sketch-Guidance on MM Case Study

Sketch-guidance enables to find all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U
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Impact of Sketch-Guidance on MM Case Study
Sketches vs Full Program

all goals except baseline: sketch guides sketch goal sketch sizes program size
1-3 1 7-12 90-124

▶ sketches elide around 90% of the program
▶ sketches elide intricate details such as array reshaping patterns

(e.g. split, join, transpose)
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Conclusion

We talked about:
▶ The RISE language & Shine compiler automating optimization via term rewriting
▶ ELEVATE rewriting strategies achieving high-performance by controlling rewriting
▶ Sketch-guided equality saturation, a novel, semi-automatic optimization technique

 thomas.koehler@thok.eu
 thok.eu Thanks!  rise-lang.org

 elevate-lang.org
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Future Work

▶ Combine sketch-guided with rewriting strategies
▶ Apply sketch-guiding to more diverse applications
▶ Improve automated search (rewrite rule scheduling, heuristics, pruning, leverage

hardware knowledge)
▶ Can we synthesize sketch guides from a sketch goal?
▶ Use in an interactive optimization assistant
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Sketch Definition
S ::= ? | F(S, .., S) | contains(S)

R(?) = T = {F(t1, .., tn)}
R(F(s1, .., sn)) = {F(t1, .., tn) | ti ∈ R(si)}

R(contains(s)) = R(s) ∪ {F(t1, .., tn) | ∃ti ∈ R(contains(s))}

def containsMap(n: NatSketch, f: Sketch): Sketch =
contains(app(map :: ?t → n.?dt → ?y, f))

def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))
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Sketch-Satisfying Equality Saturation

termi-1

sketchisatisfying

e-graphinitialize

apply

extract

costiminimizing
+rulesi

termi

searchi

▶ Terminates as soon as a program satisfying the sketch is found
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E-Graph Evolution
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E-Graph Evolution
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E-Graph Evolution
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Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)
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E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size
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