
A Term Rewriting Path to High-Performance

Thomas KœhleR Phil TRindeR Michel SteuweR

INRIA CAMUS, Strasbourg — August 2022

Optimizing Low-Level Code is Hard

▶ hand optimization is time-consuming and error-prone
e.g. in C, OpenCL, CUDA

▶ critical in performance-demanding domains
e.g. image processing, numeric simulation, machine learning

▶ typically leads to orders of magnitude performance improvements

A Term Rewriting Path to High-Performance 1

Optimizing Matrix Multiplication in C
for (int im = 0; im < m; im++) {

for (int in = 0; in < n; in++) {
float acc = 0.0f;
for (int ik = 0; ik < k; ik++) {
acc += a[ik + (k * im)] * b[in + (n * ik)];

}

output[in + (n * im)] = acc;
}

}

Optimized program on the right:
+ 110× faster runtime

Intel i5-4670K CPU

- 6× more lines, more complex code
threads, SIMD, indexing

float aT[n * k];
#pragma omp parallel for
for (int in = 0; in < (n / 32); in = 1 + in) {

for (int ik = 0; ik < k; ik = 1 + ik) {
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

aT[(ik + ((32 * in) * k)) + (jn * k)] = a[(jn + (32 * in)) + (ik * n)];
}

}
}
#pragma omp parallel for
for (int im = 0; im < (m / 32); im = 1 + im) {

for (int in = 0; in < (n / 32); in = 1 + in) {
float tmp1[1024];
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp1[jn + (32 * jm)] = 0.0f;

}
}
for (int ik = 0; ik < (k / 4); ik = 1 + ik) {

for (int jm = 0; jm < 32; jm = 1 + jm) {
float tmp2[32];
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] = tmp1[jn + (32 * jm)];

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {
tmp2[jn] += (a[((4 * ik) + ((32 * im) * k)) + (jm * k)] * aT[((4 * ik) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((1 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((1 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((2 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((2 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
#pragma omp simd
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp2[jn] += (a[((3 + (4 * ik)) + ((32 * im) * k)) + (jm * k)] *
aT[((3 + (4 * ik)) + ((32 * in) * k)) + (jn * k)]);

}
for (int jn = 0; jn < 32; jn = 1 + jn) {

tmp1[jn + (32 * jm)] = tmp2[jn];
}

}
}
for (int jm = 0; jm < 32; jm = 1 + jm) {

for (int jn = 0; jn < 32; jn = 1 + jn) {
output[((jn + ((32 * im) * n)) + (32 * in)) + (jm * n)] = tmp1[jn + (32 * jm)];

}
}

}
}

A Term Rewriting Path to High-Performance 2

Automating Optimization via Term Rewriting

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

+ convenient, hardware agnostic programming
+ high-performance code generation
+ extensible set of abstractions and optimizations

A Term Rewriting Path to High-Performance 3

RISE is a Functional Array Language

High-level matrix multiplication in RISE:

def mm a b =
map (𝜆aRow. | for aRow in a:
map (𝜆bCol. | for bCol in transpose(b):

dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (𝜆(x, y). x × y) | acc += x × y

(zip xs ys))

A Term Rewriting Path to High-Performance 4

Rewrite Rules Encode Valid RISE Transformations

split-join:

map f x | for m:
| ... = f(...)

7→
join
(map | for m / n:

(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
7→

transpose
(map | for n:

(map f) | for m:
(transpose x)) | ... = f(...)

A Term Rewriting Path to High-Performance 5

Complex Optimizations Emerge from Simple Rules
Matrix multiplication blocking in RISE:

map (𝜆aRow. | for m:
map (𝜆bCol. | for n:

dot aRow bCol) | for k:
(transpose b)) a | ...

7→∗
join (map (map join) (map transpose

map | for m / 32:
(map 𝜆x2. | for n / 32:

reduceSeq (𝜆x3. 𝜆x4. | for k / 4:
reduceSeq 𝜆x5. 𝜆x6. | for 4:

map | for 32:
(map (𝜆x7. | for 32:
(fst x7) + (fst (snd x7)) ×

(snd (snd x7)))
(map (𝜆x7. zip (fst x7) (snd x7))
(zip x5 x6)))

(transpose (map transpose
(snd (unzip (map unzip map (𝜆x5.

zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (𝜆x3. generate (𝜆x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose

(map (map (𝜆x2. map (map (zip x2)
(split 32 (transpose b)))))

split 32 a))))))

A Term Rewriting Path to High-Performance 6

Deciding which Rewrites to Apply is Hard

Equality Saturation

controlautomation

Sketch-Guided
Equality Saturation

Rewriting Strategies

A Term Rewriting Path to High-Performance 7

ELEVATE Rewriting Strategies

▶ programmers describe optimizations as compositions of rewrite rules
▶ MM blocking: 1 def blocking = (baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

+ empowers programmers to manually control the rewrite process
+ to define their own abstractions: tile, split, reorder are not built-in

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.
“Achieving high-performance the functional way: a functional pearl on expressing high-performance
optimizations as rewrite strategies”. In: ICFP (2020)

A Term Rewriting Path to High-Performance 8

ELEVATE Rewriting Strategies

▶ programmers describe optimizations as compositions of rewrite rules
▶ MM blocking: 1 def blocking = (baseline ‘;‘

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
5 reorder(List(1,2,5,6,3,4)))

- requires programmers to order all rewrite steps
- strategies are often program-specific and tedious to implement

Hagedorn, Lenfers, Koehler, Qin, Gorlatch, and Steuwer, “Achieving high-performance the functional way: a
functional pearl on expressing high-performance optimizations as rewrite strategies”

A Term Rewriting Path to High-Performance 8

Achieving High-Performance with ELEVATE

Case Study 1) Matrix Multiplication Optimizations for Intel CPU

▶ Transform loops blocking, permutation, unrolling

▶ Change data layout array packing

▶ Add parallelism vectorization, multi-threading

▶ Performance is on par with reference schedules from TVM

A Term Rewriting Path to High-Performance 9

Achieving High-Performance with ELEVATE

Case Study 2) Harris Corner Detection Optimizations for ARM CPU

▶ 4 optimizations from reference Halide schedule
circular buffering, operator fusion, multi-threading, vectorization

▶ 2 optimizations not supported by Halide convolution separation, register rotation

1.00
1.32

0.32

re
la

ti
v
e
 r

u
n
ti

m
e

p
e
rf

o
rm

a
n
ce

Halide

Lift

Rise

this work

Thomas Koehler and Michel Steuwer. “Towards a Domain-Extensible Compiler: Optimizing an Image
Processing Pipeline on Mobile CPUs”. In: CGO. 2021

A Term Rewriting Path to High-Performance 10

Rewriting strategies achieve high-performance, but
require tedious manual rewrite ordering

A Term Rewriting Path to High-Performance 11

Equality Saturation

input
term

e-graphinitialize

apply

extract

costminimizingrules

final
term

▶ Optimize programs by efficiently exploring many possible rewrites
▶ Many successful applications sparked from the recent egg library

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
“egg: fast and extensible equality saturation”. In: POPL (2021)

No manual rewrite ordering, but does not scale to the RISE case studies

A Term Rewriting Path to High-Performance 12

Equality Saturation

input
term

e-graphinitialize

apply

extract

costminimizingrules

final
term

▶ Optimize programs by efficiently exploring many possible rewrites
▶ Many successful applications sparked from the recent egg library

No manual rewrite ordering, but does not scale to the RISE case studies

A Term Rewriting Path to High-Performance 12

Sketch-Guided Equality Saturation
Observation:

▶ The shape of the optimized program is often used to explain optimizations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting

A Term Rewriting Path to High-Performance 13

Sketch-Guided Equality Saturation
Observation:

▶ The shape of the optimized program is often used to explain optimizations:

for m:
for n:
for k:
..

7→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting

A Term Rewriting Path to High-Performance 13

Sketch-Guided Equality Saturation

programmer

term1

rules1

search1

cost1

sketch1

rulesN

searchN

costN

sketchN

termN

rulesN+1

searchN+1

costN+1

sketchN+1guides goalprovides

termN+1term0

▶ Factors an unfeasible search into a sequence of feasible ones:
1. Break long rewrite sequences
2. Isolate explosive combinations of rewrite rules

 https://arxiv.org/abs/2111.13040

A Term Rewriting Path to High-Performance 14

https://arxiv.org/abs/2111.13040

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

A Term Rewriting Path to High-Performance 15

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

▶ A sketch s is satisfied by a set of terms R(s):

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

R(containsAddMul) = { R(app(app(+, ?), contains(×))) } ∪
{ F(t1, .., tn) | ∃ti ∈ R(containsAddMul) }

R(app(app(+, ?), contains(×))) = { app(app(+, t1), t2) | t2 ∈ R(contains(×)) }
R(contains(×)) = { × } ∪ { F(t1, .., tn) | ∃ti ∈ R(contains(×)) }

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

A Term Rewriting Path to High-Performance 15

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

A Term Rewriting Path to High-Performance 15

Sketches

▶ Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

A Term Rewriting Path to High-Performance 15

Impact of Sketch-Guidance on MM Case Study

Sketch-guidance enables to find all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

A Term Rewriting Path to High-Performance 16

Impact of Sketch-Guidance on MM Case Study

Sketch-guidance enables to find all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

A Term Rewriting Path to High-Performance 16

Impact of Sketch-Guidance on MM Case Study

Sketch-guidance enables to find all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

A Term Rewriting Path to High-Performance 16

Impact of Sketch-Guidance on MM Case Study
Sketches vs Full Program

all goals except baseline: sketch guides sketch goal sketch sizes program size
1-3 1 7-12 90-124

▶ sketches elide around 90% of the program
▶ sketches elide intricate details such as array reshaping patterns

(e.g. split, join, transpose)

A Term Rewriting Path to High-Performance 17

Conclusion

We talked about:
▶ The RISE language & Shine compiler automating optimization via term rewriting
▶ ELEVATE rewriting strategies achieving high-performance by controlling rewriting
▶ Sketch-guided equality saturation, a novel, semi-automatic optimization technique

 thomas.koehler@thok.eu
 thok.eu Thanks! rise-lang.org

 elevate-lang.org

A Term Rewriting Path to High-Performance 18

thok.eu
rise-lang.org
elevate-lang.org

Conclusion

We talked about:
▶ The RISE language & Shine compiler automating optimization via term rewriting
▶ ELEVATE rewriting strategies achieving high-performance by controlling rewriting
▶ Sketch-guided equality saturation, a novel, semi-automatic optimization technique

 thomas.koehler@thok.eu
 thok.eu Thanks! rise-lang.org

 elevate-lang.org

A Term Rewriting Path to High-Performance 18

thok.eu
rise-lang.org
elevate-lang.org

Future Work

▶ Combine sketch-guided with rewriting strategies
▶ Apply sketch-guiding to more diverse applications
▶ Improve automated search (rewrite rule scheduling, heuristics, pruning, leverage

hardware knowledge)
▶ Can we synthesize sketch guides from a sketch goal?
▶ Use in an interactive optimization assistant

A Term Rewriting Path to High-Performance 19

Sketch Definition
S ::= ? | F(S, .., S) | contains(S)

R(?) = T = {F(t1, .., tn)}
R(F(s1, .., sn)) = {F(t1, .., tn) | ti ∈ R(si)}

R(contains(s)) = R(s) ∪ {F(t1, .., tn) | ∃ti ∈ R(contains(s))}

def containsMap(n: NatSketch, f: Sketch): Sketch =
contains(app(map :: ?t → n.?dt → ?y, f))

def containsReduceSeq(n: NatSketch, f: Sketch): Sketch =
contains(app(reduceSeq :: ?t → ?t → n.?dt → ?t, f))

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

A Term Rewriting Path to High-Performance 20

Sketch-Satisfying Equality Saturation

termi-1

sketchisatisfying

e-graphinitialize

apply

extract

costiminimizing
+rulesi

termi

searchi

▶ Terminates as soon as a program satisfying the sketch is found

A Term Rewriting Path to High-Performance 21

E-Graph Evolution

A Term Rewriting Path to High-Performance 22

E-Graph Evolution

A Term Rewriting Path to High-Performance 22

E-Graph Evolution

A Term Rewriting Path to High-Performance 22

Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

▶ each sketch corresponds to a logical transformation step
▶ sketches elide around 90% of the program
▶ intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)

A Term Rewriting Path to High-Performance 23

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

A Term Rewriting Path to High-Performance 24

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

A Term Rewriting Path to High-Performance 24

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

cost = term size

A Term Rewriting Path to High-Performance 24

E-Graph Example

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

cost = term size

A Term Rewriting Path to High-Performance 24

