
Optimising Functional Programs with Equality
Saturation

Thomas KœhleR Michel SteuweR

Scottish Programming Languages Seminar — June 2021



Term Rewriting

Which rewrite rule should be applied when, and where?

Desired optimisation:

(a ∗ 2)/2 −→ a ∗ (2/2) −→ a ∗ 1 −→ a

Wrong turn:
(a ∗ 2)/2 −→ (a ≪ 1)/2

Infinite loop:
(a ∗ 2)/2 −→ (2 ∗ a)/2 −→ (a ∗ 2)/2 −→ · · ·

Optimising Functional Programs with Equality Saturation 1



Equality Saturation

Which rewrite rule should be applied when, and where?

Explore all possibilities
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]

[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

+ No need to decide which rewrite to apply next,
Decide which program variant you want in the end.

- Need to efficiently represent and rewrite many programs.

Optimising Functional Programs with Equality Saturation 2



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimising Functional Programs with Equality Saturation 3



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimising Functional Programs with Equality Saturation 3



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

Optimising Functional Programs with Equality Saturation 3



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimising Functional Programs with Equality Saturation 3



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

How does it work for functional programs?

Optimising Functional Programs with Equality Saturation 3



Equality Saturation for Functional Programs?

Rewriting Rise programs (typed lambda calculus with computational patterns):

(𝜆x. b)e −→ b[e/x] (𝛽-reduction)
𝜆x. f x −→ f if x not free in f (𝜂-reduction)

map f (map g arg) −→ map (𝜆x. f (g x)) arg (map-fusion)
map (𝜆x. f gx) −→ 𝜆y. map f (map (𝜆x. gx) y) if x not free in f (map-fission)

How can we implement substitution, predicates and name bindings?

Optimising Functional Programs with Equality Saturation 4



Substitution

(𝜆x. b)e −→ b[e/x] (𝛽-reduction)

▶ Small-step explicit substitution: simple but inefficient
▶ overloads the e-graph with intermediate steps

▶ Big-step substitution over the e-graph: open challenge
▶ Extraction-based substitution: efficient but approximated

1. extract terms from the e-classes b and e
2. perform a standard term substitution
3. insert the result back into the e-graph

Optimising Functional Programs with Equality Saturation 5



Substitution

(𝜆x. b)e −→ b[e/x] (𝛽-reduction)

▶ Small-step explicit substitution: simple but inefficient
▶ (1) is not found: out of memory after multiple seconds X

▶ Big-step substitution over the e-graph: open challenge

▶ Extraction-based substitution: efficient but approximated
▶ (1) is found in milliseconds ✓

map (𝜆x. f4 (f3 (f2 (f1 x)))) −→∗ 𝜆y. map (𝜆x. f4 (f3 x)) (map (𝜆x. f2 (f1 x)) y) (1)

Optimising Functional Programs with Equality Saturation 5



Predicates

𝜆x. f x −→ f if x not free in f (𝜂-reduction)

▶ if ∀t ∈ f. x not free in t: ignores valid terms
▶ if ∃t ∈ f. x not free in t: accepts invalid terms
▶ filter f into f2 = {t | t ∈ f, x not free in t}: open challenge

Optimising Functional Programs with Equality Saturation 6



Name Bindings

map f (map g arg) −→ map (𝜆x. f (g x)) arg (map-fusion)

▶ Fresh name on every rewrite: inefficient
▶ equality modulo alpha renaming is not built-in
▶ generates more and more alpha-equivalent programs

▶ DeBruijn indices: significant improvement
▶ but no equality modulo alpha renaming for sub-terms

▶ To investigate: build alpha-equivalence into the e-graph
[Maziarz et al. 2021 “Hashing modulo alpha-equivalence”]

1sequence of 13 rewrite rules, not counting 𝛼 and 𝛽 reductions

Optimising Functional Programs with Equality Saturation 7



Name Bindings

map f (map g arg) −→ map (𝜆x. f (g x)) arg (map-fusion)

▶ Fresh name on every rewrite: inefficient
▶ cannot find optimised 2D convolution1: out of memory after multiple minutes X

▶ generates more and more alpha-equivalent programs

▶ DeBruijn indices: significant improvement
▶ finds optimised 2D convolution1 in 2s ✓

▶ To investigate: build alpha-equivalence into the e-graph
[Maziarz et al. 2021 “Hashing modulo alpha-equivalence”]

1sequence of 13 rewrite rules, not counting 𝛼 and 𝛽 reductions

Optimising Functional Programs with Equality Saturation 7



Avoiding Name Bindings using Combinators

f (g x) −→ (f ◦ g) x (◦-intro)
map f ◦map g −→ map (f ◦ g) (map-fusion2)

map (f ◦ g) −→ map f ◦map g (map-fission2)

instead of

map f (map g arg) −→ map (𝜆x. f(g(x))) arg (map-fusion)
map (𝜆x. f gx) −→ 𝜆y. map f (map (𝜆x. gx)) y if x not free in f (map-fission)

enables re-ordering 4D and tiling 2D loops in 30s ✓ (with additional tricks)

Optimising Functional Programs with Equality Saturation 8



Avoiding Name Bindings using Combinators

f (g x) −→ (f ◦ g) x (◦-intro)
map f ◦map g −→ map (f ◦ g) (map-fusion2)

map (f ◦ g) −→ map f ◦map g (map-fission2)

instead of

map f (map g arg) −→ map (𝜆x. f(g(x))) arg (map-fusion)
map (𝜆x. f gx) −→ 𝜆y. map f (map (𝜆x. gx)) y if x not free in f (map-fission)

enables re-ordering 4D and tiling 2D loops in 30s ✓ (with additional tricks)

Optimising Functional Programs with Equality Saturation 8



Future Work

▶ We still cannot optimise large real-world Rise programs
matrix multiplication, corner detection, ..

▶ We want to explore many possibilities, but not all of them
▶ I am interested in focusing the search by:

▶ deleting or filtering programs
▶ enforcing normal forms
▶ controlling optimisations using rewriting strategies
▶ leveraging heuristics to prioritize promising directions

1 2 3

 thomas.koehler@thok.eu
 thok.eu Thanks!  rise-lang.org

 elevate-lang.org

Optimising Functional Programs with Equality Saturation 9



Future Work

▶ We still cannot optimise large real-world Rise programs
matrix multiplication, corner detection, ..

▶ We want to explore many possibilities, but not all of them
▶ I am interested in focusing the search by:

▶ deleting or filtering programs
▶ enforcing normal forms
▶ controlling optimisations using rewriting strategies
▶ leveraging heuristics to prioritize promising directions

1 2 3

 thomas.koehler@thok.eu
 thok.eu Thanks!  rise-lang.org

 elevate-lang.org

Optimising Functional Programs with Equality Saturation 9



Adding Types

Consider (𝜆x. x) (0 : int) and (𝜆x. x) (0.0 : float)

▶ Keeping types polymorphic enables more sharing:

𝜆x. x : ∀t. t → t

▶ Instantiating types enables more precise type-based rewriting:

𝜆x. x : int → int
𝜆x. x : float → float

Trade-off between amount of sharing and amount of information

Optimising Functional Programs with Equality Saturation 10


