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Domain-Agnostic Compilers

Some compilers are domain-agnostic:
+ generic program abstractions and optimizations
+ compile programs from any domain (turing complete)
- no automation of domain-specific optimizations
- manual optimization takes months and risks introducing bugs
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Domain-Specific Compilers

Some compilers are domain-specific:
+ convenient programming
+ high-performance

Halide algorithm: what to compute

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

Halide schedule: how to optimize

blur_y.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);

blur_x.compute_at(blur_y, x).vectorize(x, 8);
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Domain-Specific Compilers

Some compilers are domain-specific:
- fixed set of abstractions and optimizations
- lack of flexibility and extensibility

https://github.com/halide/Halide/issues/5055
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Domain-Extensible Compilers

Compilers should be domain-extensible:
+ extensible set of abstractions and optimizations

- competitive with domain-specific compilers?
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Is RISE Competitive with Domain-Specific Compilers?
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Halide

Rise important image processing pipeline optimizations are missing

[Koehler and Steuwer 2021 “Towards a Domain-Extensible Compiler: Optimizing an Image Processing
Pipeline on Mobile CPUs”]
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6 well-known image processing pipeline optimizations can be

encoded as compositions of RISE rewrite rules

[Koehler and Steuwer 2021 “Towards a Domain-Extensible Compiler: Optimizing an Image Processing
Pipeline on Mobile CPUs”]
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Orchestrating Compositions of Rewrite Rules
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[Hagedorn et al. 2020 “Achieving high-performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies”]
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Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code
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Harris Case Study

The Harris corner (and edge) detector is a well established image processing pipeline

How de we represent these operators in RISE?
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Harris Case Study

High-level point-wise operator

def ×2D(a, b: [n] [m] f32): [n] [m] f32 =
zip2d(a, b) ▷ map2d(×)

High-level convolution operator

def +3×3: [n + 2] [m + 2] f32→ [n] [m] f32 =
slide2d(3, 1, 3, 1) ▷ map2d(fun w. reduce(+, 0 join(w)))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 9



Harris Case Study

High-level Harris operator

def harris(RGB: [3] [n + 4] [m + 4] f32): [n] [m] f32 =
def I = grayscale(RGB)
def Ix = Sx(I)
def Iy = Sy(I)
def Ixx = ×2D(Ix, Ix)
def Ixy = ×2D(Ix, Iy)
def Iyy = ×2D(Iy, Iy)
def Sxx = +3×3(Ixx)
def Sxy = +3×3(Ixy)
def Syy = +3×3(Iyy)
coarsity(Sxx, Sxy, Syy, 0.04)
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Reference Optimizations

CPU schedule for Harris
from the Halide GitHub repository

const int vec = natural_vector_size<float>();
output.split(y, y, yi, 32).parallel(y)

.vectorize(x, vec);
gray.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Ix.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Iy.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Ix.compute_with(Iy, x);

Simplified internal representation of lowered code
let t1226 = ((output.extent.1 + 31)/32)
parallel (output.s0.y.y, 0, t1226) {
allocate gray[float32 * (output.extent.0 + 4) * 8]
allocate Iy[float32 * t1247 * 4]
allocate Ix[float32 * t1247 * 4]
for (output.s0.y.yi, 0, 32) {
for (gray.s0.y, gray.s0.y.min_2, gray.s0.y.loop_extent) {
for (gray.s0.x.x, 0, t1265) {
gray[ramp(((gray.s0.x.x*4) + t1268), 1, 4)] = [...] }}

for (Iy.s0.fused.y, Iy.s0.y.min_2, t1269) {
for (Iy.s0.x.fused.x, 0, t1251) {
Iy[ramp(((Iy.s0.x.fused.x*4) + t1275), 1, 4)] = [...]
Ix[ramp(((Iy.s0.x.fused.x*4) + t1275), 1, 4)] = [...] }}

for (output.s0.x.x, 0, t1250) {
output[ramp(((output.s0.x.x*4) + t1281), 1, 4)] = [...] }}

free gray
free Iy
free Ix }
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Reference Optimizations
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Reference Optimizations
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbufVersion =
fuseOperators;
splitPipeline(32); parallel;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
sequentialLines;
usePrivateMemory; unrollReductions

Harris after applying cbufVersion

slide(32+4, 32) ▷ mapGlobal(
circularBuffer(global, 3, grayLine) ▷
circularBuffer(global, 3, sobelLine) ▷
mapSeq(coarsityLine)

) ▷ join
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Optimizations beyond Halide
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Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1



=


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))
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Experimental Evaluation
(4-core) (4-core) (2-core) (4-core)

▶ All compilers outperform the OpenCV library: RISE by up to 16×
▶ RISE improved by up to 4.5×
▶ RISE cbuf is roughly on par with Halide
▶ RISE cbuf+rrot is faster than Halide by up to 40%
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Summary
Harris Operator case study on ARM CPUs

▶ We reproduced an optimized Halide schedule by defining compositional ELEVATE
optimization strategies; by extending and re-using RISE patterns.

▶ The achieved performance is on par with the highly optimized Halide compiler,
which is specifically built for image processing pipelines.

▶ We reached higher performance through additional optimizations that cannot be
expressed in a Halide schedule, showing the benefit of compiler extensibility.

But, ELEVATE optimization strategies are difficult to write!
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Deciding how to Apply Rewrite Rules

e.g. heuristic search,
 equality saturation, ...

e.g. Halide/TVM schedules,
 Elevate strategies, ...
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Guided Equality Saturation via Sketching
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Optimizing Matrix Multiplication with Sketching
map (fun aRow. map (fun bCol. dot aRow bCol) transpose b) a

−→∗

join (map (map join) (map transpose
map (map fun x2.
reduceSeq (fun x3. fun x4.

reduceSeq (fun x5. fun x6.
map (map (fun x7. (fst x7) +

(fst (snd x7)) × (snd (snd x7)))
(map (fun x7. zip (fst x7) (snd x7)) (zip x5 x6)))

(transpose (map transpose
(snd (unzip (map unzip map (fun x5.
zip (fst x5) (snd x5))
(zip x3 x4)))))))

(generate (fun x3. generate (fun x4. 0)))
transpose (map transpose x2))

(map (map (map (map (split 4))))
(map transpose
(map (map (fun x2. map (map (zip x2)

(split 32 (transpose b)))))
split 32 a))))))

containsMap(m /^ 32,
containsMap(n /^ 32,
containsReduceSeq(k /^ 4,

containsReduceSeq(4,
containsMap(32,

containsMap(32, ?))))))

▶ 0 intermediate sketch: not
found after minutes X
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Optimizing Matrix Multiplication with Sketching
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(map (fun x7. zip (fst x7) (snd x7)) (zip x5 x6)))
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(snd (unzip (map unzip map (fun x5.
zip (fst x5) (snd x5))
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(map (map (map (map (split 4))))
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(map (map (fun x2. map (map (zip x2)

(split 32 (transpose b)))))
split 32 a))))))

containsMap(m /^ 32,
containsMap(32,
containsMap(n /^ 32,
containsMap(32,
containsReduceSeq(k /^ 4,
containsReduceSeq(4, ?))))))

containsMap(m /^ 32,
containsMap(n /^ 32,
containsReduceSeq(k /^ 4,
containsReduceSeq(4,
containsMap(32,
containsMap(32, ?))))))

▶ 1 intermediate sketch: found
in seconds ✓
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Conclusion

▶ We encode 6 well-known image processing pipeline optimizations as compositions
of rewrite rules.

▶ We present guided equality saturation via sketching, to offer novel trade-offs
between precise control and full automation of optimizations.

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org
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Equality Saturation

Which rewrite rule should be applied when, and where?

Explore all possibilities
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]

[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

+ No need to decide which rewrite to apply next,
Decide which program variant you want in the end.

- Need to efficiently represent and rewrite many programs.
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Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

Congruence invariant: a = b =⇒ f(a) = f(b)
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Equality Saturation
E-Graphs

(a ∗ 2)/2 −→∗ a

How does it work for functional programs?
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Equality Saturation for RISE

(𝜆x. b)e −→ b[e/x] (𝛽-reduction)
𝜆x. f x −→ f if x not free in f (𝜂-reduction)

map f (map g arg) −→ map (𝜆x. f (g x)) arg (map-fusion)
map (𝜆x. f gx) −→ 𝜆y. map f (map (𝜆x. gx) y) if x not free in f (map-fission)

How can we implement substitution, predicates and name bindings?
▶ State-of-the-art is very inefficient, trivial optimizations are our of reach.
▶ We made substitution order of magnitudes more efficient using a practical

approximation.
▶ We made name bindings order of magnitudes more efficient using DeBruijn indices.
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