
Optimizing Processing Pipelines with a Rewrite-Based
Domain-Extensible Compiler

Thomas KœhleR Michel SteuweR

Huawei CSI Paris Seminar — December 2021



Domain-Agnostic Compilers

Some compilers are domain-agnostic:
+ generic program abstractions and optimizations
+ compile programs from any domain (turing complete)
- no automation of domain-specific optimizations
- manual optimization takes months and risks introducing bugs

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 1



Domain-Specific Compilers

Some compilers are domain-specific:
+ convenient programming
+ high-performance

Halide algorithm: what to compute

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

Halide schedule: how to optimize

blur_y.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);

blur_x.compute_at(blur_y, x).vectorize(x, 8);

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 2



Domain-Specific Compilers

Some compilers are domain-specific:
- fixed set of abstractions and optimizations
- lack of flexibility and extensibility

https://github.com/halide/Halide/issues/5055

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 3

https://github.com/halide/Halide/issues/5055


Domain-Extensible Compilers

Compilers should be domain-extensible:
+ extensible set of abstractions and optimizations

- competitive with domain-specific compilers?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 4



Domain-Extensible Compilers

Compilers should be domain-extensible:
+ extensible set of abstractions and optimizations

- competitive with domain-specific compilers?

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 4



Domain-Extensible Compilers

Compilers should be domain-extensible:
+ extensible set of abstractions and optimizations
- competitive with domain-specific compilers?

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 4



Is RISE Competitive with Domain-Specific Compilers?

1.00

0.32

re
la

ti
v
e
 r

u
n
ti

m
e

p
e
rf

o
rm

a
n
ce

Halide

Rise important image processing pipeline optimizations are missing

[Kœhler and Steuwer, CGO 2021, Towards a Domain-Extensible Compiler: Optimizing an Image Processing

Pipeline on Mobile CPUs]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 5



Is RISE Competitive with Domain-Specific Compilers?

1.00
1.32

0.32

re
la

ti
v
e
 r

u
n
ti

m
e

p
e
rf

o
rm

a
n
ce

Halide
extension

Rise

Rise (extended)

6 well-known image processing pipeline optimizations can be

encoded as compositions of RISE rewrite rules

[Kœhler and Steuwer, CGO 2021, Towards a Domain-Extensible Compiler: Optimizing an Image Processing

Pipeline on Mobile CPUs]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 5



Orchestrating Compositions of Rewrite Rules

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

optimization
strategy

performance engineer

language

language

provides

orchestrates

[Hagedorn et al, ICFP 2020, Achieving high-performance the functional way: a functional pearl on expressing

high-performance optimizations as rewrite strategies]

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 6



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ map(×) ▷ reduce(+, 0) Rewriting

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ map(×) ▷ reduce(+, 0) Rewriting

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ map(×) ▷ reduce(+, 0) Rewriting

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Compilation Example
dot product

High-level RISE program

def dot(a, b) = zip(a, b) ▷ map(×) ▷ reduce(+, 0)

ELEVATE optimization strategy

strategy lowerDot = applyOnce(reduceMapFusion)

rule reduceMapFusion = map(f) ▷ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

zip(a, b) ▷ reduceSeq(fun acc, x. acc + fst(x) × snd(x), 0) Low-Level
RISE Program

void dotSeqC(float* out, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {
acc = acc + (a[i] * b[i]);

}
out[0] = acc;

}

Low-Level
C Code

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 7



Harris Case Study

The Harris corner (and edge) detector is a well established image processing pipeline

How de we represent these operators in RISE?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 8



Harris Case Study

High-level point-wise operator

def ×2D(a, b: [n] [m] f32): [n] [m] f32 =
zip2d(a, b) ▷ map2d(×)

High-level convolution operator

def +3×3: [n + 2] [m + 2] f32→ [n] [m] f32 =
slide2d(3, 1, 3, 1) ▷ map2d(fun w. reduce(+, 0 join(w)))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 9



Harris Case Study

High-level Harris operator

def harris(RGB: [3] [n + 4] [m + 4] f32): [n] [m] f32 =
def I = grayscale(RGB)
def Ix = Sx(I)
def Iy = Sy(I)
def Ixx = ×2D(Ix, Ix)
def Ixy = ×2D(Ix, Iy)
def Iyy = ×2D(Iy, Iy)
def Sxx = +3×3(Ixx)
def Sxy = +3×3(Ixy)
def Syy = +3×3(Iyy)
coarsity(Sxx, Sxy, Syy, 0.04)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 10



Reference Optimizations

CPU schedule for Harris
from the Halide GitHub repository

const int vec = natural_vector_size<float>();
output.split(y, y, yi, 32).parallel(y)

.vectorize(x, vec);
gray.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Ix.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Iy.store_at(output, y).compute_at(output, yi)

.vectorize(x, vec);
Ix.compute_with(Iy, x);

Simplified internal representation of lowered code
let t1226 = ((output.extent.1 + 31)/32)
parallel (output.s0.y.y, 0, t1226) {
allocate gray[float32 * (output.extent.0 + 4) * 8]
allocate Iy[float32 * t1247 * 4]
allocate Ix[float32 * t1247 * 4]
for (output.s0.y.yi, 0, 32) {
for (gray.s0.y, gray.s0.y.min_2, gray.s0.y.loop_extent) {
for (gray.s0.x.x, 0, t1265) {
gray[ramp(((gray.s0.x.x*4) + t1268), 1, 4)] = [...] }}

for (Iy.s0.fused.y, Iy.s0.y.min_2, t1269) {
for (Iy.s0.x.fused.x, 0, t1251) {
Iy[ramp(((Iy.s0.x.fused.x*4) + t1275), 1, 4)] = [...]
Ix[ramp(((Iy.s0.x.fused.x*4) + t1275), 1, 4)] = [...] }}

for (output.s0.x.x, 0, t1250) {
output[ramp(((output.s0.x.x*4) + t1281), 1, 4)] = [...] }}

free gray
free Iy
free Ix }

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 11



Reference Optimizations

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 12



Reference Optimizations
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbufVersion =
fuseOperators;
splitPipeline(32); parallel;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
sequentialLines;
usePrivateMemory; unrollReductions

Harris after applying cbufVersion

slide(32+4, 32) ▷ mapGlobal(
circularBuffer(global, 3, grayLine) ▷
circularBuffer(global, 3, sobelLine) ▷
mapSeq(coarsityLine)

) ▷ join

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 13



Optimizations beyond Halide

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 14



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1



=


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1

 =


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1

 =


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Optimizations beyond Halide
In RISE and ELEVATE

ELEVATE optimization strategy

strategy cbuf+rrotVersion =
fuseOperators;
splitPipeline(32); parallel;
separateConvolutions;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
rotateValuesAndConsumeLines;
usePrivateMemory; unrollReductions

Typical 2D Convolution

nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)))

−1 0 1
−2 0 2
−1 0 1

 =


1
2
1


[
−1 0 1

]
nbhV ▷ map(slide(3,1)) ▷ transpose ▷ map(fun nbh2d.

nbh2d ▷ transpose ▷ map(dot(wV)) ▷ dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ slide(3,1) ▷ map(dot(wH))

nbhV ▷ transpose ▷ map(dot(wV))
▷ rotateValues(private, 3) ▷ mapSeq(dot(wH))

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 15



Experimental Evaluation
(4-core) (4-core) (2-core) (4-core)

▶ All compilers outperform the OpenCV library: RISE by up to 16×
▶ RISE improved by up to 4.5×
▶ RISE cbuf is roughly on par with Halide
▶ RISE cbuf+rrot is faster than Halide by up to 40%

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 16



Harris Case Study on ARM CPUs
Summary

▶ We reproduced an optimized Halide schedule by defining compositional ELEVATE
optimization strategies; by extending and re-using RISE patterns.

▶ We reached higher performance through additional optimizations that cannot be
expressed in a Halide schedule, showing the benefit of compiler extensibility.

But, ELEVATE optimization strategies are difficult to write!

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 17



Harris Case Study on ARM CPUs
Summary

▶ We reproduced an optimized Halide schedule by defining compositional ELEVATE
optimization strategies; by extending and re-using RISE patterns.

▶ We reached higher performance through additional optimizations that cannot be
expressed in a Halide schedule, showing the benefit of compiler extensibility.

But, ELEVATE optimization strategies are difficult to write!

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 17



Optimization Strategies are Difficult to Write

ELEVATE optimization strategy

strategy cbufVersion =
fuseOperators;
splitPipeline(32); parallel;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
sequentialLines;
usePrivateMemory; unrollReductions

Behind the scenes:
▶ 400 lines of ELEVATE strategies
▶ hard to write: 1 month of work
▶ hard to read, hard to reuse

Can we automatically apply rewrite rules instead of writing strategies?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 18



Optimization Strategies are Difficult to Write

ELEVATE optimization strategy

strategy cbufVersion =
fuseOperators;
splitPipeline(32); parallel;
vectorizeReductions(vec);
harrisIxWithIy;
circularBufferStages;
sequentialLines;
usePrivateMemory; unrollReductions

Behind the scenes:
▶ 400 lines of ELEVATE strategies
▶ hard to write: 1 month of work
▶ hard to read, hard to reuse

Can we automatically apply rewrite rules instead of writing strategies?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 18



Exploring Many Ways to Apply Rewrite Rules

input
term

e-graphinitialize

apply

extract

costminimizingrules 

final
term

Equality Saturation
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]

[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

▶ An e-graph efficiently represents a large set of equivalent programs.
▶ All possible rewrite rules are applied in a purely additive way, growing the e-graph.
▶ After growing the e-graph, the best program found is extracted.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 19



Exploring Many Ways to Apply Rewrite Rules

input
term

e-graphinitialize

apply

extract

costminimizingrules 

final
term

Equality Saturation
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]

[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

+ No need to decide which rewrite to apply next.
+ Decide which program you want in the end.
- Does not scale to our Harris case study

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 19



Exploring Many Ways to Apply Rewrite Rules

input
term

e-graphinitialize

apply

extract

costminimizingrules 

final
term

Equality Saturation
[Tate et al. 2009 “Equality saturation: a new approach to optimization”]

[Willsey et al. 2021 “egg: fast and extensible equality saturation”]

Can we make a trade-off between precise control and full automation?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 19



Declaring Rewrite Goals using Sketches

Harris after applying cbufVersion

slide(32+4, 32) ▷ mapGlobal(
circularBuffer(global, 3, grayLine) ▷
circularBuffer(global, 3, sobelLine) ▷
mapSeq(coarsityLine)

) ▷ join

Harris sketch corresponding to cbufVersion

contains(? ▷ slide(32+4, 32) ▷ mapGlobal(
contains(? ▷
circularBuffer(global, 3, containsGrayLine) ▷
circularBuffer(global, 3, containsSobelLine) ▷
mapSeq(containsCoarsityLine))

))

▶ When designing optimizations, it is
useful to think about the desired shape
of the optimized program.

▶ Sketches are program patterns that
capture this intuition while leaving
details unspecified using program holes
(?) and other constructs (contains).

▶ Sketches can be used to guide searches
such as equality saturation.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 20



Declaring Rewrite Goals using Sketches

Harris after applying cbufVersion

slide(32+4, 32) ▷ mapGlobal(
circularBuffer(global, 3, grayLine) ▷
circularBuffer(global, 3, sobelLine) ▷
mapSeq(coarsityLine)

) ▷ join

Harris sketch corresponding to cbufVersion

contains(? ▷ slide(32+4, 32) ▷ mapGlobal(
contains(? ▷
circularBuffer(global, 3, containsGrayLine) ▷
circularBuffer(global, 3, containsSobelLine) ▷
mapSeq(containsCoarsityLine))

))

▶ When designing optimizations, it is
useful to think about the desired shape
of the optimized program.

▶ Sketches are program patterns that
capture this intuition while leaving
details unspecified using program holes
(?) and other constructs (contains).

▶ Sketches can be used to guide searches
such as equality saturation.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 20



Sketch-Guided Equality Saturation

input
term

performance engineer

sketchNsatisfying

e-graphinitialize

apply

extract

costNminimizing
+

provides

term

rules1

search1

searchN

rulesN
cost1

sketch1

final
term

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 21



Sketch-Guided Equality Saturation

input
term

performance engineer

sketchNsatisfying

e-graphinitialize

apply

extract

costNminimizing
+

provides

term

rules1

search1

searchN

rulesN
cost1

sketch1

final
term

rewriting
high-level
functional
program

what?
low-level
functional
program

how?

extensible: data-parallel patterns rewrite rules

SHINEdomain-specific
languages

hardware
targets

compiler

language

equality saturation

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 21



Matrix Multiplication Case Study
Optimization Time and Memory Consumption

Single-Sketch1:
version sketches found time RAM rules
baseline 1 yes 0.5s 20 MB 2
blocking 1 yes 1h+ 35GB 5M
+ 5 others 1 no ∼1h+ 60GB+ ⁇?

Multi-Sketch2:
version sketches found time RAM rules
baseline 1 yes 0.5s 20 MB 2
blocking 2 yes 7s 0.3 GB 11K
+ 5 others 3-4 yes <7s <0.5 GB <11K

1Intel Xeon E5-2640 v2
2AMD Ryzen 5 PRO 2500U

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 22



Conclusion

▶ We encode 6 well-known image processing pipeline optimizations as compositions
of rewrite rules.

▶ We propose sketch-guided equality saturation to offer novel trade-offs between
precise control and full automation of optimizations.

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 23



Conclusion

▶ We encode 6 well-known image processing pipeline optimizations as compositions
of rewrite rules.

▶ We propose sketch-guided equality saturation to offer novel trade-offs between
precise control and full automation of optimizations.

 thomas.koehler@thok.eu
 thok.eu

Thanks!
We are open to collaboration!

 rise-lang.org
 elevate-lang.org

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 23



Deciding How to Apply Rewrite Rules

e.g. heuristic search,
 equality saturation, ...

e.g. Halide/TVM schedules,
 Elevate strategies, ...

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 24



E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2

x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 25



E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1

(x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 25



E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z)

x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 25



E-Graphs

(a ∗ 2)/2 −→∗ a

(a ∗ 2)/2 x ∗ 2 −→ x ≪ 1 (x ∗ y)/z −→ x ∗ (y/z) x/x −→ 1
x ∗ 1 −→ x

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 25



E-Graphs

(a ∗ 2)/2 −→∗ a

Congruence invariant: a = b =⇒ f(a) = f(b)

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 25



E-Graphs

(a ∗ 2)/2 −→∗ a

How does it work for functional programs?

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 25



Equality Saturation for RISE

(𝜆x. b)e −→ b[e/x] (𝛽-reduction)
𝜆x. f x −→ f if x not free in f (𝜂-reduction)

map f (map g arg) −→ map (𝜆x. f (g x)) arg (map-fusion)
map (𝜆x. f gx) −→ 𝜆y. map f (map (𝜆x. gx) y) if x not free in f (map-fission)

How can we implement substitution, predicates and name bindings?
▶ State-of-the-art is very inefficient, trivial optimizations are our of reach.
▶ We made substitution order of magnitudes more efficient using a practical

approximation.
▶ We made name bindings order of magnitudes more efficient using DeBruijn indices.

Optimizing Processing Pipelines with a Rewrite-Based Domain-Extensible Compiler 26


