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Abstract—Coarse-grained reconfigurable arrays (CGRAs) are
domain-specific devices promising both the flexibility of FPGAs
and the performance of ASICs. However, with restricted domains
comes a danger: designing chips that cannot accelerate enough
current and future software to justify the hardware cost.

We introduce FlexC, the first flexible CGRA compiler, which
allows CGRAs to be adapted to operations they do not natively
support. FlexC uses dataflow rewriting, replacing unsupported
regions of code with equivalent operations that are supported
by the CGRA. We use equality saturation, a technique enabling
efficient exploration of a large space of rewrite rules, to effectively
search through the program-space for supported programs.

We applied FlexC to over 2,000 loop kernels, compiling to
four different research CGRAs and 300 generated CGRAs and
demonstrate a 2.2× increase in the number of loop kernels
accelerated leading to 3× speedup compared to an Arm A5
CPU on kernels that would otherwise be unsupported by the
accelerator.

I. INTRODUCTION

Specialized hardware has demonstrated truly significant
performance gains over general-purpose processors [1], yet
despite its potential [2], [3], it faces real challenges to wider
adoption [4]. The fundamental reason is that programming such
accelerators is difficult [5], often requiring modification of the
underlying algorithms [4]. Users are often reluctant modify
their algorithms [6] raising frequency-of-use [7], [8], [9] and
cost [10] as concerns.

Heterogeneous Coarse-Grained Reconfigurable Architectures
(CGRAs) [11] are a class of architectures that promise to solve
this problem [7]. CGRAs can achieve near-ASIC level perfor-
mance [12] and provide enough flexibility to run a wider class
of code [7]. Heterogeneous CGRAs use processing elements
specialized to various degrees [13]. While specialization makes
hardware more efficient [14], [15], [16], hardware specialization
also introduces limitations on the software [17], [18], [19].

Despite aiming at flexibility, heterogeneous CGRAs are hard
to use beyond the scope they were designed for. They age
poorly as software evolves [20] and falls out of the scope
of the narrowly designed hardware: the domain-restriction
problem.

This problem is highlighted by existing state-of-the-art
CGRA compilers such as OpenCGRA [21] which frequently

fail to generate code for the specialized hardware. If code
contains even a single operation that is unsupported by a par-
ticular hardware, existing techniques simply cannot accelerate
it, restricting CGRAs to an overly narrow software domain.
This domain-restriction poses a significant challenge and is not
well understood [22]. What we need is a new approach that
automatically transforms user programs to fit heterogeneous
CGRAs, expanding the domain of supported software without
user effort.

We introduce FlexC, the first flexible CGRA compiler that
addresses the domain-restriction problem. FlexC uses a set
of rewrite rules that translate unsupported operations into
supported ones. This compilation strategy requires a non-
trivial application of rewrites in an attempt to find a valid
transformation to an expression the CGRA supports, leading
to a large search space. To explore this space efficiently, FlexC
uses a powerful technique called equality saturation [23], [24].
CGRA compilation presents a number of unique challenges to
equality saturation including, crucially, transformation encoding
and cost modelling. Overcoming these challenges enables us
to efficient explore large spaces.

In summary, we contribute:

• FlexC, the first flexible CGRA toolchain designed to
support operationally-specialized CGRAs, increasing the
number of loops that can run on a particular CGRA by
a factor of 2.2×;

• a compiler designed to integrate domain-specific rewrite
rules, and four sets of rewrite rules demonstrating the
effective translation of code to run on CGRAs designed
for different domains;

• the first large-scale benchmark suite for CGRA compilers,
with more than 2,000 loops from five different projects1;

• an evaluation of these tools, demonstrating the impor-
tance of non-linear exploration techniques like equality
saturation in finding working compilation sequences for
real-world heterogeneous CGRAs.
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for (i = 0; i < h + 5; i++)

    {

      tmp[0] = (src[0] + src[1]) * 20 - (src[-1] + src[2]) * 5 + (src[-2] + src[3]) + pad;

      tmp[1] = (src[1] + src[2]) * 20 -  (src[0] + src[3]) * 5 + (src[-1] + src[4]) + pad;

      tmp += tmpStride;

      src += srcStride;

    }

for (i = 0; i < h + 5; i++)

    {

      a = src[0] + src[1];

      b = src[-1] + src[2];

      c = src[1] + src[2];

      d = src[0] + src[3];

      tmp[0] = (a << 4 + a << 2) + -1 ^ (b << 2 + b) + 1 + (src[-2] + src[3]) + pad;

      tmp[1] = (c << 4 + c << 2) + -1 ^ (d << 2 + d) + 1 + (src[-1] + src[4]) + pad;

      tmp += tmpStride;

      src += srcStride;

    }
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Fig. 1: An example from the FFMpeg [25] library, which is part of our benchmark suite. FlexC rewrites the loop to run within
the context of the CCA-like accelerator adapted from DSAGen [26]. Equality saturation is critical in this example to enable the
conversion of a - b into a + -1 ˆ b + 1, as the rewriter must traverse the a + (-b) state, which is no better than
a - b. This is an example of the cost-trap problem (Figure 2c).

II. MOTIVATION

Heterogeneous CGRAs have the potential for better power
efficiency and lower area utilization than their homogeneous
counterparts [14], [27]. However, introducing this heterogeneity
introduces significant compilation challenges.

A. The Software Domain-Restriction Problem

The cost of the specialized hardware has to be justified by
enough use [7] and demand [10]. To illustrate this problem,
consider the loop shown in figure 1 from the FFMpeg library.
We wish to compile this code to the CCA-like accelerator
adapted from DSAGen [26] shown on the left of the figure.
Unfortunately, the loop contains multiplication and subtraction
operators which are not supported by the CGRA. Currently, no
compiler technique is able to generate code that is executable
on this accelerator. Our approach is able to rewrite the program
into the form shown in the bottom of the figure. It no longer
uses subtraction or multiplication, but instead used additions
and shifts which are supported. The loop can now be executed
on the CCA.

B. Limits of existing compilers

To overcome the domain-restriction problem, we need
compilers to rewrite software that uses operations not natively
supported by the hardware, but existing approaches fail.

a) Standard compiler flows: Compiler frameworks, such
as GCC, LLVM and MLIR, use canonicalization passes to trans-
form IRs into a predictable and efficient form. Canonicalization
is implemented with a set of simple fixed rewrite rules that
are applied greedily. In heterogeneous CGRAs, canonicalizing,
however, does not solve the domain-restriction problem, as
the rewritten expressions may not be supported by the target
hardware.

1To be released upon publication

b) The Limits of Greedy Dataflow Rewriting: For suc-
cessful rewriting, we need to add new rewrites that allow
translation to supported ones. However, we have to determine
the order of, and whether to apply rewrites without searching a
combinatorially large number of options. Greedy rewriting is an
efficient approach but Figure 2 highlights three problems that
can cause greedy rewriters to get stuck. In Figure 2(a), greedily
applying the first available rules, r1, r6, r3 to expression e1
leads to the resulting expression e10 which is less performant
than the optimal expression e4. In Figure 2(b), greedily applying
the first available ruler leads to a cycle between e1 to e3, never
reaching the solution e4. Finally, in Figure 2(c), the greedy
rewriter gets stuck in a local minimum, e2 due to the cost of
applying further local rewrites.

Figure 1 demonstrates these limitations in real code. To
convert a - b into a + -1 ˆ b + 1, the rewriter must
traverse the a + (- b) state, which is no better than a - b.
As there is no immediate improvement in cost, a greedy scheme
would not apply such a rewrite. Equality saturation however,
applies this rewrite leading to the transformed code executable
on the accelerator.

C. Our approach

FlexC automatically adapts the software, replacing unsup-
ported operations via dataflow rewriting. FlexC adaptively
chooses between traditional greedy rewriting techniques and
equality saturation [23], [28]. This overcomes challenges
with traditional canonicalization and greedy techniques while
retaining fast execution where possible. Equality saturation uses
a graph data structure, called an e-graph, to record semantically
equivalent programs while space-efficiently representing their
different syntactic program variations. Rewrites are directly
applied to this graph, rapidly growing the set of equivalent
program variations. Rewrites are either be applied until satura-
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(c) In the cost-trap problem, A greedy rewriter can get stuck in state
e2 as e3 is a less valuable state.

Fig. 2: Applying rewrite rules with a greedy rewriter results
in dead-ends that equality saturation avoids.

tion is reached and no rewrites can be applied any more, or
until a pre-defined rewrite goal is reached [29].

Our results confirm that equality saturation enables FlexC
to compile more software to the CGRA.

III. SYSTEM OVERVIEW

FlexC is implemented in OpenCGRA [21], a CGRA compiler
intended to target heterogeneous CGRAs. Given an input DFG,
FlexC explores sequences of rewrites to eliminate the operations
that are not supported by a specialized architecture from the
DFG. After rewriting the DFG, FlexC uses OpenCGRA to
target the hardware.

Figure 3 shows how FlexC compiles software for a CGRA.
In a traditional CGRA compiler, a Data-Flow Graph (DFG) is
used to generate a CGRA configuration. If the DFG does not
match the target CGRA precisely, the code generation fails.

FlexC adds a rewrite system, using a set of rewrite rules
dictated by the context and a cost function based on the target
CGRA. After selecting the optimal graph according to the cost
model (the most likely DFG to be compilable to the underlying
CGRA), FlexC uses a traditional CGRA compiler to generate
the final mapping.

FlexC can be applied in conjunction with any CGRA
compiler — provided that appropriate rulesets using the right
instructions can be supplied. We provide FlexC under a liberal
license to allow this2.

2Released upon publication
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Fig. 3: FlexC system overview. A Data-Flow Graph (DFG),
set of Rewrite Rules and a CGRA specification are input.
FlexC first applies a hybrid-rewrite strategy and selects the
most suitable candidate to pass to the CGRA compiler, which
generates the configuration.

A. Graph Rewriting

FlexC translates programs to domain-specific CGRAs by
generating a large set of equivalent code loops and finding a
suitable match if one exists. This section formally defines our
inputs: a dataflow graph representing a loop, a set of rewrite
rules, and a CGRA specification and our rewriting strategy.

Definition 1: A data flow graph D is a finite set of nodes
N corresponding to operations op(n1, ..., nm), where op is an
operation symbol and ni ∈ N are children operands.
D must be a directed acyclic graph, meaning that a function

id : N → |N | should exist such that:

∀n = op(n1, ..., nm) ∈ N. ∀i. id(ni) < id(n)

While OpenCGRA uses Control Data Flow Graphs (CDFGs),
and thus can handle branches and loops, we do not attempt
to rewrite across control-flow boundaries. Instead, we break
all control flow before rewriting, and restore control flow after
rewriting.

Definition 2: A rewrite rule R is of the form l ⇒ r, where
l and r are patterns. A pattern P is a tuple (NP , OP ), where
NP is a data flow graph that may contain variable nodes on
top of operation nodes, and OP ⊆ NP is a list of output nodes.
R can be applied to D when l has a match (Ml, σ) in D,

where Ml is a list of nodes from D matching Ol, and σ maps
variables to matching nodes from D. To produce the list of
nodes Mr that should replace the Ml nodes in D, the variables
are substituted in r, written as r[σ] = (N ′

r,Mr).
A rewrite rule must be semantics-preserving. This means

that, ∀(Ml, σ). Ml = Mr which depends on the element-
wise application of a given semantic equality. The meaning
of equality in this case depends on the rules provided. We
will see in section IV that this may be true equality, fuzzy
equality (e.g. with floating-point manipulation rules) or even
weaker definitions of equality (e.g. with stochastic computing
rules IV-B3).

Definition 3: In a CGRA, we have an array of processing
elements, PEs (PE i), each of which supports a particular set



of operations (op(n1, ..., nm)), Supported i. We generate this
set from the CGRA’s specification.

Given a particular DFG D, with nodes N , there may be some
subset of nodes Unsupported(N) that have operations without
hardware support anywhere on the CGRA. We wish to find a
sequences of rewrite rules that we can apply to the DFG to
produce D′ with nodes N ′ such that Unsupported(N ′) = {},
as otherwise it will be impossible to schedule that particular
code onto the CGRA. We thus define the set of operations a
particular full CGRA can support as:

ops =
⋃
i

Supported i

1) Rewriting Goal: The compiler takes a dataflow graph
(DFG) D as input. Numerous existing techniques attempt to
find a valid mapping [30], but in heterogeneous CGRAs, the
operations in the DFG may not be in the supported set for any
node.

The goal of a rewriting algorithm A(D,Rs, ops) is to return
D′, obtained by rewriting D using the set of rules Rs, such
that D′ only uses operation symbols from ops.

We further define a cost function C(D, ops) to minimize:∑
op(...)∈N

1 if op ∈ ops else 106

This incentivizes smaller programs by giving a cost of 1 to
available operations, while giving a huge penalty to unavail-
able operations by giving them a cost of 106. Our CGRA
specification and cost function aim to eliminate unavailable
operations to successfully map the program onto the CGRA,
without trying to precisely model the execution performance.

With the assumption that |N | < 106, rewriting successfully
eliminates all unavailable operations if C(D′, ops) < 106, and
fails to do so if C(D′, ops) ≥ 106.

2) Greedy Rewriting: Listing 1 shows our greedy rewriter.
Greedy rewriting is the most straightforward rewriting ap-
proach; it runs quickly but often gets stuck in local minima.

On each greedy iteration, we iterate over every rewrite rule
to find matches (lines 6 to 8). If applying a rewrite for a given
match leads to a cost reduction, we proceed with the rewritten
program and forget about the previous program (lines 9 to
11). The local minima variable keeps track of whether a fixed
point was reached, which is the termination condition (line 3).

3) Equality Saturation: Listing 2 shows our algorithm for
rewriting via equality saturation. Equality saturation [23] is a
more sophisticated rewriting approach; it avoids getting stuck
in local minima but can be slow to execute. We leverage both
the state-of-the-art Rust egg library [24] and existing work
extending equality saturation to graph rewriting [31].

First, we initialize an e-graph data structure that compactly
represents a space of equivalent programs by sharing equivalent
sub-terms as much as possible (line 2). Then, we run the
explorative phase of equality saturation using our set of rewrite
rules, iteratively exploring possible rewrites in a breadth-first
manner and growing the e-graph (line 3).

Listing 1: Greedy rewriting algorithm
1 def g re ed y ( d , r s , ops ) :
2 l o c a l m i n i m a = f a l s e
3 whi le not l o c a l m i n i m a :
4 l o c a l m i n i m a = t r u e
5
6 f o r r in r s :
7 matches = f i n d m a t c h e s ( d , r )
8 f o r m in matches :
9 d2 = app ly match ( d , m)

10 i f C( d2 , ops ) < C( d , ops ) :
11 d = d2
12 l o c a l m i n i m a = f a l s e
13 break
14
15 re turn d

Listing 2: Equality saturation algorithm
1 def e q s a t ( d , r s , ops ) :
2 eg ra p h = i n i t i a l i z e e g r a p h ( d )
3 e g g e x p l o r a t i o n ( egraph , r s )
4 re turn e g g l p e x t r a c t i o n ( egraph ,
5 c o s t f o r e g g ( ops ) )
6
7 def e g g e x p l o r a t i o n ( eg , r s ) :
8 . . .
9 whi le not s a t u r a t i o n o r t i m e o u t :

10 matches = [ ]
11 f o r r in r s :
12 matches += f i n d m a t c h e s ( eg , r )
13 f o r m in matches :
14 app ly match ( eg , m)
15 . . .

As visible in line 9, the explorative phase terminates when
all possible rewrites have been explored (a fixed point, called
saturation, is reached), or when another stopping criteria is
reached (e.g. a timeout). On each explorative iteration, all
rewrite-rule matches are collected (line 12) and applied in a
non-destructive way, adding new equalities into the e-graph
(line 14).

Finally, we extract the best program from the e-graph
according to our cost function using Linear Programming (line
4).

4) Hybrid Rewriting: FlexC uses hybrid rewriting (listing 3),
which takes the best from both strategies. In hybrid rewriting,
we first apply a fast greedy rewriter. If the greedy rewriter
does not find a suitable candidate, FlexC falls back to the more

Listing 3: Hybrid rewriting algorithm
1 def h y b r i d ( d , r s , ops ) :
2 d2 = gr e ed y ( d , r s , ops )
3 i f c o s t ( d2 , ops ) < 106 : re turn d2
4 e l s e :

e q s a t ( d , r s , ops )



expensive, but more likely to succeed, equality saturation.

IV. REWRITE RULES

FlexC is a platform that can target any domain-specific
CGRA, and can integrate domain-specific rules to work
alongside traditional rules. Equality-saturation enables this
flexibility by using the same rule exploration algorithms
regardless of changes in the ruleset. We explore several different
rulesets: some rules are always correct, while other rulesets
may only be useful in certain domains, such as the stochastic-
computing rewrite rules (section IV-B3).

In a traditional application of rewrite rules, compilers look
to perform strength reduction [32], by replacing more complex
rules with simpler rules — this is typically achieved by
canonicalizing towards the simplest method of representing
an expression. In a traditional compiler, a rule is typically
formatted as:

Complex Operation → Simpler Operation

A typical rewrite system produces a series of independent
rewrites,

e1 =⇒
rule1

· · · =⇒
ruleN−1

eN

to produce the best suited expression. The rules are written in
such a way that they chain together, as they are in existing
compilers. We stop rewriting when no more rules are applicable.

However, when compiling for a CGRA, replacing simpler
operations with more complex ones can be beneficial if they
enable an entire region of code to be run on faster, fixed-
function hardware.

As a result, for some sequence of rules

e1 =⇒
rule1

· · · =⇒
rulei−1

ei =⇒
rulei

· · · =⇒
ruleN−1

eN

some intermediate ei may be the best choice of expression,
and further, rule application can occur bidirectionally. Rather
than strength reduction, which implies a linear sequence
of operations that become strictly simpler, the process for
compiling for a CGRA is instead rewrite exploration.

A. Core Integer Rules

We use a set of strength-reduction and canonicalization rules
representative of those in a typical compiler. An example is:

x * −1 => −x

On the left-hand side of this rule, we require a multiplication
operation, and on the right-hand side, we require a negation
operation. For most compilers, the right-hand side is (almost)
always the better choice, so most rewriters only apply these
rules forwards

FlexC applies this rule in both directions, as some CGRAs
may have multiplication-supporting PEs and other CGRAs
may have negation-supporting PEs. We refer to this universally
applicable ruleset as the integer ruleset. Some examples are
shown in Table I.

x - y <=> x + (-y)
x >> y <=> x / (1 << y)

x and y <=> not ((not x) or (not y))

TABLE I: Some example rewrite rules that can be used to
change the operations an expression requires.

x * y <=> x / (1.0 / y)
-1.0 * x <=> -x

TABLE II: Rewrite rules enabled by reducing requirements on
floating-point equality.

x AND y => x * y
x OR y => (x + y) > 0
x XOR y => x != y

TABLE III: Rewrite rules under the assumption that binary
logical operators are boolean operators.

x * y => x AND y

TABLE IV: Example rewrite rule for stochastic computing

B. Domain-Specific Rules

The core integer ruleset represents a baseline of rules
widely applicable to all CGRAs. However, the constrained
nature of heterogeneous CGRAs, which may feature highly
specialized operations, means that domain-specific relaxations
of correctness typically result in better targetability. FlexC
can use custom rewrite rules as input, tailored for a given
accelerator.

1) Floating-Point Rules: Floating-point rewrite rules are
rarely bit-for-bit correct. Compilers typically use flags to allow
for different levels of correctness guarantees, enabling floating-
point transformations only when the programmer is willing to
forgo accuracy.

When compiling floating-point operations to CGRAs, FlexC
uses these rules by default (they can be turned off). This enables
more rewrites at the cost of losing bit-correctness. An example
of rules enabled by this assumption are shown in Table II.

2) Boolean Logical Operations: Logical operations such
as AND (&) and OR (—) take two different meanings: they
specify bitwise operations on entire words at a time, and they
specify boolean operators (where any non-zero result is true).
With a compiler flag provided by a programmer to indicate
these are equivalent, we can add more rewrite rules.

For example, as boolean operations, AND can be rewritten
using multiplication nodes, increasing the space of programs
that a CGRA without logical operator support can be used
for. We supply a set of rewrite operations that assume logical
operations are equivalent to boolean operations. Some examples
of rewrite rules in this set are shown in Table III.

3) Stochastic Computing: Stochastic computing is a comput-
ing paradigm aimed at achieving better energy efficiency than
traditional computing by trading off accuracy [33]. In particular,
stochastic computing allows multipliers to be replaced by
logical and operators, and add operations to be replaced by
muxes [34], in contexts where the absolute result is not needed,
and this allows the use of simpler accelerators. Table IV shows
an example ruleset.



Domain Project Samples

Compression Bzip2 [35] 13
Multimedia FFmpeg [25] 1852

FreeImage [36] 223
Scientific Computing DarkNet [37] 77

LivermoreC [38] 26

Sum 2188

TABLE V: Quantities of unique loops in benchmark suite.

V. EXPERIMENTAL SETUP

We implement FlexC above OpenCGRA, which is written
in C++. We use the egg Rust library [24] to implement our
rewriters. For equality saturation, we use an iteration limit
of 10 with a node limit of 100,000 to prevent the e-graphs
from growing too large. FlexC is integrated into the LLVM
framework and is invoked using the opt tool using LLVM IR
as input.

FlexC relies on OpenCGRA to find the loop to accelerate.
OpenCGRA looks for the first loop in each provided function.
We implement the architecture specification in JSON, adding
a mapping from each PE to the sets of operations it will be
able to support.

A. Benchmarks

We have collected a benchmark suite of 2188 real-world
open-source code loops composed of projects in the multimedia,
compression and simulation domains shown in table V. Typi-
cally, CGRA compilers are evaluated on benchmark suites
of a few tens of loops which do not capture the wide
spectrum of loops that programmers write, and are easy to hand
optimize [39]. Our benchmark suite captures a wide range of
loops, without the overheads of running whole programs [40].
These loops allow us to demonstrate FlexC works on a wide
range of architectures and programs.

We extract loops suitable for CGRA scheduling from the
projects shown in table V. Each extracted is the innermost
loop, has no internal branches or function calls, and contains
at least one array access. These properties ensure our bench-
marks compile to many different CGRAs using a variety of
compilation techniques.

We build a custom Clang-based tool that identifies loop
structures and detects required type definitions. Clang is run
using the build-system rules for each project. Each loop is
placed into a function skeleton so it can be compiled.

B. Alternative approaches

We compare FlexC against three alternative approaches:
OpenCGRA [21], the LLVM [41] Rewriter and our own Greedy
Rewriter. OpenCGRA is the default scheme that simply maps
operations to function units without any rewriting, with LLVM’s
rewriter disabled to enable a comparison to it. The LLVM
rewriter employs the rewrite rules within the LLVM compiler
infrastructure, which are intended to cannonicalize the program
for typical CGRA architecture. The greedy rewriter is FlexC
without equality saturation fallback.

C. Existing Domain-Specific Accelerators

We evaluate domain-specific architectures from three prior
works. We consider one domain-specific CGRA work (RE-
VAMP [14]), one more general domain-specific accelerator
work (DSAGen [26]), and one stochastic computing CGRA
(SC-CGRA [42]).

1) DSAGen: DSAGen [26] is a framework for generating
domain-specific architectures. These architectures share many
properties with CGRAs in that they expose architectural details
to the compiler and present coarse-grained reconfigurable
blocks. We make minor modifications3 to the architectures
shown in Figure 4(b) and 4(c) in [26] so they can be represented
within OpenCGRA.

2) REVAMP: REVAMP [14], a framework for generating
domain-specific CGRAs provides an example of a CGRA
for heterogeneous compute optimization, with nodes for
addition, subtraction, multiplication and some logic operations
implemented within a 6x6 CGRA.

3) SC-CGRA: SC-CGRA [42] is a stochastic-computing-
based CGRA. Typical exact multipliers are replaced with
approximate multipliers, and similarly for adders within a
4x4 CGRA. We implement this in OpenCGRA, providing
approximate adders/multiplers instead of exact ones4.

VI. RESULTS

We evaluate FlexC against traditional heterogeneous-CGRA
compilers, improving the number of benchmarks that can be
compiled to heterogeneous CGRAs by 2.2×, and demonstrate
that despite making the computation more complex, the rewrite
rules do not introduce slow-downs, showing geomean speedups
of 3×.

A. Existing Domain-Specific Accelerators: Compilation Rate

We apply FlexC to four accelerators presented in section V-C,
comparing to three other rewriting strategies. Figure 4 shows
that FlexC increases the number of loops that these CGRAs
can support by a factor of 2.2×. Figure 5 gives details split
by benchmark suite for each accelerator.

1) DSAGen: Figure 4 shows that using FlexC increases the
number of loops that can be supported on the CCA and Maeri
architectures by a factor of 2.2× and 1.6× respectively. Maeri
does particularly well on LivermoreC (figure 5), especially
once equality saturation is used, because of the workload’s
heavy use of floating-point operations, though it is less suited to
Bzip2 than CCA because of Maeri’s lack of boolean arithmetic.

3OpenCGRA requires more routing to be present between compute elements,
so the architectures we use are more flexible than in DSAGen. OpenCGRA
also does not support architectural features like distribution trees, which we
have omitted. We further add the nodes required by OpenCGRA to support
loop pipelining (an add and an integer compare).

4The authors discuss different accuracies of adder/multiplier, but do not
state the number of each used, so we use a simple assignment of one multiplier
and one adder per node. We also omit node-fusing, as we use OpenCGRA
to target this accelerator. The operators other than the multipliers and adders
are not specified completely. For this evaluation, we assume each node has
logical operations, and arithmetic operations simpler than multiplication. To
enable OpenCGRA to compile some things on it’s own, we add one exact
adder, which is required for induction variables in almost all loops.
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Fig. 4: We consider four different architectures, adapted from
DSAGen [26] (CCA and Maeri), REVAMP [14] and SC-
CGRA [42]. All architectures use the integer and floating-
point rulesets, and SC-CGRA uses the stochastic ruleset. The
architectures are specialized to different degrees: the more
specialized architectures, CCA and Maeri, benefit from FlexC
more than the more generic architecture from REVAMP.

LLVM performs well on the CCA architecture as it has
a more comprehensive set of rewrite rules than have been
implemented in FlexC, and on the CCA architecture, the canon-
icalization rules it uses are appropriately targeted. Nevertheless,
FlexC outperforms it due to more comprehensive exploration
of the rewrite space.

This case study, on non-CGRA architectures, reveals the
generality of FlexC: while we do not claim that this comprehen-
sively demonstrates that our rewriter can compile to different
architectures (as we still rely on the OpenCGRA backend), it
does demonstrate that FlexC may be applicable to more diverse
computation models than CGRAs.

2) REVAMP: We implement REVAMP in the OpenCGRA
framework and compile each of our benchmarks to it (fig. 4).
FlexC increases the number of loops that can be supported on
this CGRA by 15%, consistently across different workloads
(fig. 5).

This increase is small because REVAMP’s example already
supports almost all the required operations for non-floating
point code. We will see in other examples that FlexC becomes
more important as the domain becomes more restricted.

3) SC-CGRA: Figure 4 shows FlexC increases the number
of loops that can be supported by a factor of 5.2×.

This case study demonstrates FlexC is not only relevant
within heterogeneous fabrics: if a homogeneous CGRA lacks
operations that compilers typically assume to be available,
FlexC’s methods may still be necessary to generate working
code. Bzip2 in particular (fig. 5) more than doubles the amount
of targeted code once FlexC’s equality saturation is used,
compared to greedy-only, because otherwise it gets stuck in

local minima and fails to explore the space enough to find a
match.

B. Compilation Rate: Architectures Specialized for Loops

We demonstrate that the rewriting technique used by FlexC
is applicable to many different specialized CGRAs within a
varied design space.

Using 300 randomly selected loops in our benchmark suite,
we first build a heterogeneous CGRA designed for that loop
in particular. We run FlexC across the other loops in the
benchmark suite and measure which loops can and cannot
be compiled. Figure 6 shows what fraction of loops can be
compiled, making a distinction between loops that are in the
same suite (so are often more likely to share the same class
of operation) and loops from different domains.

FlexC improves the applicability of the accelerators, both
within the domain they were designed for by a factor of 2.3×,
and between domains by a factor of 2.9×, demonstrating the
applicability of FlexC to many different types of heterogeneous
CGRA. In some cases, a typical accelerator for a loop in one
benchmark will actually do better on the other workloads (e,g,
for freeimage and ffmpeg). This is because freeimage and
ffmpeg are highly diverse, and so an accelerator designed for
one loop is less likely to match others in the same diverse
benchmark.

Figure 7 shows FlexC supports CGRAs across a wide
range of specializations, from very specialized CGRAs with
only a few operators to complex heterogeneous CGRAs. For
architectures with fewer operations, equality saturation is more
important, as there are fewer paths to a valid rewrite.

1) Speedups: This section demonstrates that rewriting code
in ways that at first-glance are inefficient can result in
speedup by enabling accelerator utilization. Compiling to
CGRA implementations typically improves performance and
reduces power usage. We consider speedup in this evaluation.
In line with other CGRA work, we consider speedup in the
case that loops are executing large numbers of iterations, so
one-time overheads like offloading costs for loosely coupled
accelerators are ignored.

We compare two systems with similar specifications.
For a CGRA system, we take architectural parameters for
ADRES [43], a 6x6 CGRA which we clock at 200 MHz. We use
the initialization interval to obtain performance estimates for the
CGRA. To obtain a realistic CPU baseline, we execute the loops
on an Arm A5 running at 500 MHz using an Analog Devices
SC-589EZKit development board [44] and methodology for
generating inputs from Exebench [45]. Speedups are shown in
figure 8, showing a geomean performance improvement of 3×,
demonstrating that FlexC’s rewrite rules are not only effective
in enabling targeting of CGRAs, but also in achieving speedup
on them.

C. Existing Domain-Specific Accelerators: End-to-End Evalu-
ation

We demonstrate that FlexC also performs well on well-
known and computationally important kernels. To do this, we
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Fig. 5: Results for each accelerator pairing by benchmark suite. Equality saturation often dramatically improves coverage for
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Fig. 6: Using accelerators designed for individual loops in each
benchmark suite, how much code in the same suite (red) and
other suites (blue) can be compiled to these accelerators. FlexC
increase the compilation rate by a factor of 2.3× in the same
suite and 2.9× between suites.

take the OpenCGRA benchmark suite [21], along with the
LivermoreC benchmark suite previously explored. We use the
same setup as in section VI-B1.

The results are shown in Figure 9. Compared to running on
an Arm Cortex-A5, FlexC achieves a speedup on 2.0× across
all applications. This compares to the LLVM rewriter, which
is only able to extract 1.5× performance increase across all
applications.

5We omitted ADPCM Encoder/Decoder as OpenCGRA is unable to compile
it to any accelerators due to size, and Conv, FFT, MVT and Relu due to
presence of divide operations that cannot be eliminated, as none of our case-
study accelerators support divide operations.
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Fig. 7: How the number of different operations in a CGRA
influences compilation rate. FlexC performs consistently across
many levels of generality, from very specialized accelerators
with few operators to much more generic accelerators with
many different operators. Equality saturation is most important
for more specialized architectures.

D. Using Different Rulesets

FlexC provides a generic rewriting framework that can be
applied to many different rulesets. These rulesets may be
flagged by the programmer as valid for particular loops, or
valid for a particular program.

We inspect four different rulesets here (covered in more detail
in Section IV-A), an integer ruleset, derived of rules that may
always be applied, a floating-point ruleset, derived of rules that
may be applied under assumptions such as -ffast-math,
a logical operations-as-binary operations ruleset that can be
used to provide greater flexibility of rewrites involving logical
operators and a stochastic computing ruleset that enables typical
stochastic computing transformations. These secondary rulesets



0.0 0.2 0.4 0.6 0.8 1.0
Loop/Architecture Combination (ordered by speedup)

0

2

4

6

8

10

12

14

Sp
ee

du
p

Geomean (3.03)

Speedup Threshold

Fig. 8: Speedup achieved by rewriting applications to run on
a low-power CGRA vs running on a comparable low-power
CPU. We achieve 3× geomean over running on a CPU.

bi
cg

bl
ow

fis
h

dt
w fir

ge
m

m

hi
st

og
ra

m

la
tn

rm

liv
er

m
or

ec

sp
m

v

Ge
om

ea
n

0

2

4

6

8

Sp
ee

du
p

LLVM
CCA
Maeri

REVAMP
SC-CGRA

bi
cg

bl
ow

fis
h

dt
w fir

ge
m

m

hi
st

og
ra

m

la
tn

rm

liv
er

m
or

ec

sp
m

v

Ge
om

ea
n

0

2

4

6

8

Sp
ee

du
p

FlexC
CCA
Maeri

REVAMP
SC-CGRA
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the Livermore C benchmark suite, comparing various CGRA
architectures to an Arm Cortex-A5. Benchmarks that were
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omitted5. The top figure shows the speedup achieved using the
LLVM rewriter to target each CGRA, and the bottom figure
shows speedup via FlexC.
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Fig. 10: Comparing how different sets of rewrite rules improve
the code coverage of an accelerator. All rulesets are run with
the int ruleset. The stochastic computing rules are only applied
to SC-CGRA as they require specialized hardware support not
available in other accelerators.

can be activated by the programmer using a flag. Figure 10
shows how these different rulesets provide different compilation
performance. Rulesets are run in combination with the int
ruleset as it contains many enabling rewrites for the specialized
rewrites in the other rulesets. We can see that determining which
rulesets are useful is architecture-specific. For example, Maeri
benefits a lot from the logic-as-boolean ruleset, as it does not
have logic operators, while CCA benefits from the stochastic
rules as it does not have multipliers.

E. Most Frequently Applied Rewrite Rules

Part of the power of FlexC is that the rewrite rules that
need to be applied vary by architecture. By using equality
saturation, FlexC is able to use one standard set of rules for all
architectures and apply the relevant rules in each case. Table VI
shows the most frequently applied rules for the CCA and Maeri
architectures (when compiled using the integer and floating
point rulesets): two architectures with nearly disjoint sets of
operators.

F. Compile Time

A challenge with Equality Saturation is in keeping the
search-space manageably sized, as e-graphs can grow rapidly,
causing excessive compile times and resource usage [29], [46].
We avoid these issues in FlexC by limiting the number of
explorative iterations, still finding good solutions in many
cases.

Figure 11 shows the time taken by FlexC to rewrite and
schedule the DFG. We use a cutoff time of 300 s to avoid
exploring the rewrite space fruitlessly — we can see that the
rate of successful compilations drops off rapidly after 60 s,
followed first by a large number of early terminations without
successful scheduling (most likely due to reaching saturation,



CCA
1 x * 2 => x << 1
2 x * 4 => x << 2
3 x * 1 => x
4 -x (Floating Point) => x + 2ˆ32 (Int)

Maeri
1 x * 1 => x
2 x << 1 => x * 2
3 x << y => mul(x, load(csel(y > 32, 33, y)))
4 x - y => x + -y

REVAMP
1 x * 1 => x
2 -x (Floating Point) => x + 2ˆ32 (Int)
3 x / 2 => x >> 1
4 x / 8 => x >> 3

SC-CGRA
1 x * y => x & y
2 x * y => ISC(x, y)
3 x * 1 => x
4 -x (Floating Point) => x + 2ˆ32 (Int)

TABLE VI: The most commonly applied rules for each
architecture. We omit LLVM-specific rewrites for SC-CGRA.
As the CCA and Maeri provide nearly disjoint operators, they
are examples of the need for rewrites to apply bidirectionally.

Fig. 11: Time to schedule code on a CGRA using FlexC and
OpenCGRA. We cut-off rewriting at 300 s to avoid excessive
exploration. After 60 s, the compilation rate is very low, so
FlexC is not missing many compilations at longer timeouts.

iteration or node limit), then by stagnation in progress for
infeasibly large search spaces. These compile times are fast
enough that more exhaustive CGRA schedulers will be able to
incorporate this strategy within the existing order of magnitude
of compilation time. For example Beidas and Anderson report
ILP compile times with a geomean of 60 s [47].

We can also see the effect of using a greedy rewriter as a
preliminary step here. In 10% of cases, FlexC is able to rely
on the greedy rewriter and find a compiling loop rapidly. We
can further see that when FlexC uses equality saturation, it is
more successful early on in the exploration.

VII. RELATED WORK

A. Existing CGRAs

Research on CGGRs has been extensive [11], [30]. Older
CGRAs [43], [48], [49] tend to provide a homogeneous grid of
PEs with a programmable interconnect. However, the design-

space of CGRAs is immense, including heterogeneous on-chip
networks [50], [51], [52], [53], [54], decouplings of memory
and compute [55], [26], unifying memories [56], and various
techniques to specialize PEs [57], [58], [59], [60], [28], [27],
[61], [62]. Toolchains to enable development [63], [64], [65],
[66], [67], [68], [69], [70] and aid design [14], [71], [72] mean
that is is relatively easy to design and build a domain-specific
CGRA.

1) Domain-Specific CGRAs: Domain-specific CGRAs exist
for neural networks [73], [74], [75], [76], scientific kernels [77],
[78], [62], [16], [79], [80], approximate computing [81], [42],
stencil computations [82], HPC [52], multimedia [83], [84],
[85] and streaming applications [12].

2) Industrial CGRAs: Xilinx’s ACAP provides a CGRA-
like model of computation [86] and uses an MLIR-based
toolchain [87]. Samsung have designed the SLP-URP [88]
for low-power medical use-cases. Smaller companies such
as Wave Computing [89] and SambaNova Systems [74] and
Recore Systems [90] also involved in CGRA-design. Large-
scale research projects of producing real hardware [91], [92]
also use CGRAs.

B. Compiling for CGRAs

Numerous authors address compiling branches [93], [94],
[95], [96], [97], [98], nested loops [99], [96], [100], scheduling
of large loops [101], [102], [103], [104], [105] and irregular
memory accesses [98]. Compilation time is relevant in many
fields [106], [107] and has been addressed both with faster
algorithms [106] and hardware acceleration [108], [109].

CGRA scheduling can be done with binary decision
diagrams [47], the polyhedral model [52], [110], SAT
solvers [111], [112] and ILP models [113], [114], [115], [116].
Heuristic approaches can use information from failed place-
ments [117], [118], rewrite rules to simplify routing [119], shar-
ing information between placement and routing phases [120]
and integration of hardware features within the compiler
model [121], [122]. Machine learning can automate many
approaches [123], [124], [125], [105], [126].

DSLs can be used to simplify the compilation processes,
enabling greater parallelism [127], [128], [129], [130], [131],
[132] but do not totally eliminate compiler challenges [133].
API interfaces can eliminate compiler challenges, but also
eliminate the flexibility of CGRAs [134], [135].

C. Compiling for Hardware Accelerators

Compiling for API programmable accelerators has been
explored using equality saturation [136] and program synthe-
sis [17]. Equality saturation has also been used to optimize
tensor programs for tensor accelerators [137]. Similarly, ex-
ternalizing rewrite rules to enable programs to run efficiently
on hardware accelerators [138]. While these approaches could
target CGRAs behind API interfaces, they do not support com-
piling to CGRAs directly — and so lose flexiblity. Idiomatic
compilation [139] has been used to target closely-related spatial
accelerators [140].



D. Equality Saturation

Equality saturation [23], [24] has been used for a range
of tasks, including: optimization and translation validation of
Java bytecode and LLVM programs [141], improving accuracy
of floating point expressions [142], synthesizing structured
CAD models [143], optimizing linear algebra expressions [144],
tensor graph superoptimization [31], vectorization for digital
signal processors [145], optimizing integer multiplication on
FPGAs [146], hardware datapath optimization [147].

A proposed DSLs to Accelerators (D2A) methodology [137],
[136] uses equality saturation for optimization and hardware
mapping of DSLs. This paper aligns with the flexible matching
idea from the D2A methodology, but considers mapping
arbitrary C code to CGRAs to address the CGRA domain-
restriction problem, and evaluates the difference between
equality saturation and greedy rewriting.

While equality saturation is a powerful rewriting technique
that addresses limitations of greedy rewriting, scaling to long
rewrite sequences is limited as the e-graph grows quickly. The
Pulsing Caviar mechanism [46] was evaluated on arithmetic ex-
pressions to balance exploration and exploitation, and compared
to greedy rewriting for this purpose. Sketch-guiding [29] is
another recently proposed semi-automated technique to improve
scaling of equality saturation.

VIII. CONCLUSION

We introduce FlexC, a compiler for domain-specific CGRAs
that addresses the domain-restriction problem: where CGRAs
that have been designed for a particular domain are hard to
apply to software outside that domain. FlexC uses equality-
saturation to rewrite software from different domains so it
can run on hardware not designed for it. FlexC increases the
number loops that can be supported by a factor of 2.2× over
existing CGRA compilers and enables acceleration of loops
leading to a geomean speedup of 2.1×.

FlexC demonstrates the potential that rewriting software to
match novel hardware has: the techniques developed here are
applicable to other kinds of accelerators with programmable
networks. We present the first study that characterizes how
different decisions surrounding heterogeneity effect the fraction
of code supported by an accelerator, showing that the more
specialized an accelerator is, the more important FlexC is.
FlexC opens up new development possibilities by promising
that even if software requirements change in a heartbeat,
accelerators with a large sunk-cost can still be applied.
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